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Naturvidenskabelig kandidateksamen. 1.del. Sommeren 1998

Samlet prgve: Statistik 1 og Sandsynlighedsteori 2 Side 4
Opgave 3
Lad X, X,,... vere en fglge af uafhengige stokastiske variable, s& X}, er uniformt fordelt

over [0, 2k?] for k > 1, hvor p > 0 er givet og fast; d.v.s. X} har for ethvert % tethedsfunktion
givet ved

55> hvis 0 <z < 2kP
fi(z) =

0, hvisz < 0ellerz > 2k?.

Vis, at

() B(Xg) = kP, E|Xg — k7" = 22 Var(Xy) = £2 (Va > 0).
3

a+1?

(2) Hvis 0 < p < £, sd gelder
1 n
— Xy — k) -0 P-as.ogia-middel (Vo >0
=1
n t-—
forn — oo.

(3) Foralle p > 0 har vi, at

for n = oo.

(4) Hvis 0 < p < %, sder

summabel P-a.s. og i 2-middel.

(5) Hvis X er en stokastisk variabel som opfylder Ly (t) = 62;—;1 for allet € R, hvor Ly

betegner Laplace transformationen af X, sder X ~ X;.

Opgave 4

Lad X, X,,... vare en fglge af uath@ngige identisk fordelte stokastiske variable, s X,.’erne

er eksponentialt fordelt med parametre A > 0; d.v.s. X}, har for ethvert & tethedsfunktion givet

ved

Xe ™ hvisz > 0

0, hvis < 0.

Opgaven fortsettes



Naturvidenskabelig kandidateksamen. 1.del. Sommeren 1998
Samlet prpve: Statistik 1 og Sandsynlighedsteori 2

Side 5

Lad F, = o(Xy,...,X,); s&t
8= Z:Zl Xy og M,=S5,— %

Vis, at

(1) {M,,,F, | n > 1} er en martingal.

) E(M,)=0 (Vn>1).
For /3 > 0 givet og fast, lad

r=inf{k>1 | Xy >p3}.

Vis, at

(3) 7erenstoptid for {F, |n>1}.
@ P(r>n)=(1—e™)" (Yn2>1).
(5) E(7) = M.

©) |Menn| <S:+%, S, <(r—1)B+X,, EX})=%

(7) B(X:) =Y, E(Xilrmiy) < B Y02, VP(T = k) < co.

8) E(S,) =%
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Naturvidenskabelig kandidateksamen. 1.del. Vinteren 1998-99
Sandsynlighedsteori 2 og Statistik 1 Side 1

Opgave 1

Lad X, X,,... vere en fglge af uafh@ngige stokastiske variable, sa X}, er eksponentialfordelt

med parameter \; > 0 for alle £ > 1; d.v.s. X}, har for ethvert k& tethedsfunktion givet ved

Age M hvisz > 0
fr(z) =

0, hvis ¢ < 0.

Vis, at

() B(Xy) = &, B(XP) = 2 (vm > 1), Var(Xy) =

1
(Ak)?"

(2) Hvis >~ m < o0, sé geelder

1 n . 1 ' '
=3 (Xi = 5) = 0 P-as. og 2-middel

for n — oo.

(3) Hvis A, = ¢ foralle k > 1, si geelder

1 n -
———— > (X —k) 3 N(0,1)
V 2=y KT
for n — oo.
(4) Hvis > 12, (7\1,{_)2 < 00, sa er
o ] 1
Zk:l E(X‘ N X—};)
summabel P-a.s. og i 2-middel.
(5) Hvis X er en stokastisk variabel som opfylder ¢ x () = 21— for alle t € R, hvor ¢y

(\1—it)
betegner den karakteristiske funktion af X, saer X ~ Xj.

Opgavesettet fortsaettes



Naturvidenskabelig kandidateksamen. 1.del. Vinteren 1998-99

Sandsynlighedsteori 2 og Statistik 1 Side 2
Opgave 2
Lad X, X,,... vare en fglge af uathengige identisk fordelte stokastiske variable, sa X} ’erne

er uniformt fordelt over [1, 9] ; d.v.s. X} har for ethvert £ tethedsfunktion givet ved

£, hvis1 <z <9

flz) =

0, hvisxz < lellerz > 9.

Lad F, = o(Xy,...,X,), og s&t
. n ‘Yk . 1 n ,
A[n a Hk:l ('“5“) - 5_71 k=1 JXk.

Vis, at

(1) E(X)=5(VE>1).

(2) { M,,, 7, |n > 1} er en martingal.

3) E(M,) =1 (Vn>1).
For 1 < a < 9 givet og fast, lad

r=inf{k > 1| X}y > a}.

Vis, at

(4) Terenstoptidfor{ F,, |n>1}.

(5) P(r>n)=(251)" (Vn>1).

8

6) B(r) = =

9—a

(7) Hvis a < 5, sa er 7 optional for {M,, }, og

Opgavesettet fortsettes
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Naturvidenskabelig kandidateksamen. 1.del. Sommeren 1999

Sandsynlighedsteori 2 og Statistik 1 Side 1
Opgave 1
Lad Xy, X,,... vare en fglge af uathengige stokastiske variable, sa X, for ethvert n har tet-

hedsfunktion givet ved

2
—(n—=z), hvis0 <z <n
n
fo(@) =
0, hvis z ¢ [0, n].
Vis, at
(D
2 2
E( X’TL) =3 E(Xn)2 — 7—1_, ‘/(ZT'(AYn) = T—S
(2)
a+1

E|X, — E(X,)|* <2°E

¥

“ < n® (Yo >1).
a+1

(3) Hvis 8 > £, sa geelder

1~/ Xy k'-F
— E (A_ﬁk -3 ) — 0 P-as. ogi a-middel
n v <

k=1

forn — co (Yo > 0).

(4) For n — oo har vi,

(5) Hvis > 2, sder

summabel P-a.s. og i 2-middel.

Opgaven fortsettes



Naturvidenskabelig kandidateksamen. 1.del. Sommeren 1999
Sandsynlighedsteori 2 og Statistik 1 Side 2

(6) Hvis Z er en stokastisk variabel, som opfylder

E(7%) = i (VE > 1)
(k1) (k+2) -7
hvor n > 1 er givet og fast,sder Z ~ X,,.
Opgave 2
Lad X, Xs,... vere en fglge af uafh@ngige stokastiske variable, sa .X,, er eksponentialt fordelt

med parameter A, > 0 for n > 1, d.v.s. X, har for ethvert n tethedsfunktion givet ved

Ae~ % hvisz > 0

0, hvis z < 0.

Lad F, = o(Xy,...,X,); s®t

Vis, at

(1) {M,,F, | n > 1} er en martingal.
2) E(My)=0 (Yn>1).
1

(3) Hvis > 2, o < 0 sa gelder M,, — M., P-as.og S, — S, P-as.forn — oo.

For /3 > 0 givet og fast, lad

k
T =inf{k >1 | ZX]‘ > B} (inf @ := o0).
7=1

Vis, at
(4) 7 eren stoptid for {F,, | n > 1}.

)

<1 — e —[ i .
P{r >n} <1 —exp ( I} llglkléln /\k>

Opgaven fortsettes
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Naturvidenskabelig kandidateksamen. 1.del. Sommeren 2000
Statistik 1 og Sandsynlighedsteori 2 Side 1

Opgave 1

Lad (X, ),>1 vare en fglge af uafh@ngige stokastiske variable, s& at X,, for ethvert n > 1 er
po( A, )-fordelt, hvor \,’erne er strengt positive reelle tal, d.v.s. \, > 0 for alle n. For ethvert

n > 1 gelder altsa, at

/\k
P(Xn:k):e"\”-k—’; k=0,1,....

Det oplyses, at hvis Y er en stokastisk variabel, som er Poisson fordelt med parameter A > 0,
d.v.s. Y er po())-fordelt, sa er (dette skal ikke bevises)

E[Y]=Var(Y) =X og E[|Y = \[*] =X+ 3)\°%

(1) Vis at | E[e!X1=M)] | = e=M(l=cost) for ethvert reelt tal ¢.

(2) Antag i dette delspgrgsmél at ) >~ | A\, /n < co. Vis at

o0

Z(‘YTL - /\n)/\/E

n=1
er summabel (d.v.s. konvergent med en endelig verdi) P-n.o. samt konvergenti 2-middel.

(3) Antag i dette delspgrgsmal at 0 < m < A, < M for alle n > 1, hvor m og M er givne

reelle tal. Vis at

1 « "
— > (Xp = M) 5 N(0,1) forn — oo,
Sp

k=1
hvor s, :=+/> ;_, A forallen > 1.
(4) Antag i dette delspgrgsmal at A\, = A > 0 for allen > 1. Vis at

2o(Sp/n=N?% L 1
n (2/; ) —)F(;,l) for n — oo,

hvor S, := >7,_, Xj forallen > 1.

(5) Visat
Z Ay < 00 = Z(X” — A,) summabel P-n.o. .
n=1 n=1

Vink til <=: Man kan f.eks. benytte kontinuitetssetningen for karakteristiske funktioner.

Opgavesattet fortsettes
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Naturvidenskabelig kandidateksamen. 1.del. Sommeren 2000
Statistik 1 og Sandsynlighedsteori 2 Side 2

Opgave 2

Lad (X,).>0 vere en fglge af uafh@ngige stokastiske variable, som alle er I'(2, 1)-fordelte,
d.v.s. X, har for ethvert n > 0 tethedsfunktion f givet ved

z-e ¥ x>0
fle) = { 0 x < 0.
Definer F,, := o(Xo,...,X,) forn > 0.
(1) Visat E[\? - e~(A=DXa] = | foralle A\ > 0 og alle n > 0.
Lad (),).>0 betegne en reel talfglge, sd at \,, > 0 for alle n.

(2) Vis at (L,, F,)n>0 er en ikke-negativ martingal, hvor forn > 0

n

Ly :=[J(0f - e %),

k=0
(3) Visat L,, — L., P-n.o.for n — oo, hvor
P liin L, hvis grenseverdien eksisterer i R
0 ellers,
samtat K[L.] <1ogE[L., |F,] < L, P-n.o.foralle n > 0.
(4) Vis for enhver (F,),>o-stoptid 7, at L, r,— L, P-n.o.forn — oo, hvor

i lim L;r, hvis grensevardien eksisterer i R
o— n
T -
0 ellers,

og at 7 er optional for (L, ),>o hvis E[L,] = 1.

(5) Visat P(Lo, = 0) = 0eller P(L., = 0) = 1. Vink: Udnyt f.eks. at

A
{lim L, = 0} = {lim L*"

=0} foralle & > 0.
k

(6) Visatforallen > 0er
Fee
ElLo | F) = Ly - E[L—] P-n.o.

og udnyt dette til at vise, at P(L., > 0) = 1 hvis og kun hvis F[L.] = 1.
(7) Antag at \,, = 2 for alle n. Vis at
1
lim—log L, = 2log2 — 2 P-n.o.
n on

og udnyt dette til at vise, at P(L., = 0) = 1.

Opgavesattet fortsettes
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Naturvidenskabelig kandidateksamen. 1.del. Sommeren 2001
Sandsynlighedsteori 2 Side 1

Opgave 1

Lad (X, ).>1 betegne en fglge af uath@ngige stokastiske variable, sa at X,, ~ po(\,,) for ethvert
n > 1, hvor A, > 0, d.v.s. X,, er Poisson fordelt med parameter \,, for alle n. Antag at X5, ~

Xg,q forallen > 1, d.v.s. Ay, = Ag,—1, 0g definer
Zn = )(gn — Xgn_l forn Z 1.
Det oplyses, at hvis Y er en stokastisk variabel, som er Poisson fordelt med parameter A > 0,
d.vs. Y ~ po(N), sder E[Y?] = A? + 3\% 4 \. (dette skal ikke bevises)
(1) Gor rede for at Z; er en symmetrisk stokastisk variabel og beregn E[Z,], Var(Z,) og E[Z}].
(2) Gor rede for at E[e*?1] = e=22(1=0st) foralle t € R.
(3) Antagat ) .~ Ay = cosamtat A, < M < co for alle n. Vis at
t 2 "
lim P L:;l— € [a,b] | = / —— e s

z Zi:l /\2i a Qﬁ

for alle reelle tal @ < b.

(4) Antagat A\, = A > 0 forallen > 1. Ggr rede for at (@), ),>1 er konvergent i fordeling og

bestem graensefordelingen, hvor

7
_ZZL n> 1.

V Z:'L:l ZZQ B

(5) Vis for enhver begranset reel talfglge (an)nzl, at

Qn =

(Z aiZi> er konvergent i fordeling < Z a;Z; er summabel P-n.o.
n>1

1—=1 =1

Det kan uden bevis benyttes, at 1 — cos @ > 2 for |z < 1.

Opgavesettet fortsettes
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Naturvidenskabelig kandidateksamen. 1.del. Sommeren 2001
Sandsynlighedsteori 2 Side 2

Opgave 2

Lad (X, ).>1 vere en fglge af uafth@ngige stokastiske variable, sd at X,, ~ N(0,1) for alle
n > 1, d.v.s. X, er normalt fordelt med middelverdi 0 og varians 1 for alle n.
Definer

Fni=0(Xy1,...,X,) forn >1 og Fo:={0,0Q}

Spi=Y X forn>1 ogSp:=0,

=1
samt for alle (a,b) € R? ogn > 0 defineres M2 := exp(asS, — bn),

d.v.s.

Me* =[] exp(aX; —b) forn >1 og Mg® =1.

=1

Det kan i1 denne opgave uden bevis benyttes, at for ethvertt € R er

(o e} 1 > >
tz -z /2 t2/2
e’ e dr = e"/”.
/_oo V2T

(1) Ggr rede for at E[M!'] = ¢="/? for alle n > 1, samt bestem de talpar (a, b) for hvilke

lim M** =0 ilL”
n— 00
(2) Bestem de (a,b) € R? for hvilke (M2, F)n>0 €r en supermartingal og vis, at
(M®** F,)ns0 er en martingal < o = 2b.
(3) Visat (aS, —bn)/n — —b P-n.o.ogi L' foralle (a,b) € R?, samt at
M®** -0 P-no. < b>0.
(4) Definer forc¢ > 0

7. :=inf{n > 0| M>* > c} (inf(() := oo0).

Vis at 7, er en stoptid for filtret (F,),>0, 0g at 7. er optional for (M??),>.

(5) Visathvisc > 1,sder

P(1. = 00) >0 og E[M?*? 1. < oo] = 1.

Te )

Opgavesattet fortsettes
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Naturvidenskabelig kandidateksamen. 1.del. Sommeren 2001
Sandsynlighedsteori 2 Side 3

Opgave 3

Lad (X, ).>1 veere en fglge af uafhengige stokastiske variable, som er uniformt begrensede,
d.v.s.der findeset A" € R, sé at

P(|X,| < K)=1forallen > 1.

Lad for alle n 1, og o2 betegne h.h.v. middelveardi og varians for X,.

(1) Vis at
Z 0} < oo = Z(Xi — p;) summabel P-n.o. og konvergent i L?.
=1 =1

(2) Vis at

= X =) ~
E U?:OO = Zz:l(n 5) —)N(O,l)
i=1 Zi:l Ui

(3) Vis f.eks. ved brug af (2) at hvis y,, = 0 for alle n, sd gelder

i X; summabel P-n.o. = i o? < oco.

1=1 i=1

(4) Vis f.eks. ved brug af Kolmogorov’s 0 — 1 lov at hvis 7, 07 = co, s er
P(limsup ) (X — i) = 00) = P(liminf Y (X; — ;) = —o0) = 1.
" i=1 =

(5) Vis at hvis 3 77, X; er summabel i sandsynlighed, s& er Y72 0? < oo, og 277, y; er

i

konvergent med en endelig grensevardi.

Lad (Y, ).>1 betegne endnu en fglge af uath@ngige stokastiske variable.

(6) Vis f.eks. ved brug af Borel-Cantelli Lemmaet, at

> Y; summabel P-no. = 3K € Ry > P(JYi| > K) < co.

=1 1=1
(7) Vis at 377, Y; er summabel P-n.o., hvis og kun hvis der findes et A € R, s at flg. tre
rekker er konvergente med endelig graensevardi

o0 [o.e]

Yo PUYil > K), DTEY: 1gviexy] og Y Var(Yi- Lyycxy)-

i=1 1= 1=1

Vink. Udnyt f.eks.at Y; = Y; - Lyvi<xy +Yi- 1y, >k foralle og K.
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Naturvidenskabelig kandidateksamen. 1.del. Vinteren 2001/2002
Sandsynlighedsteori 2 Side 1

Opgave 1

Lad (X,)n>0 betegne uathangige stokastiske variable, sa at X, ~ U(—an,a,) for n > 1,

hvor a, > 0, d.v.s. X,, er uniformt fordelt over intervallet (—a,, a,) for alle n.

(1) Vis at E[X;] =0 og Var(X,) = a3/3 og bestem fordelingen for ‘:fl‘
(2) Vis at

00
Z Xn

n-a
n=1 "

er summabel P-n.o.og konvergent i middel, d.v.s.i L'(P).

(3) Antag i dette spgrgsmal at - < a, <1 for alle n > 1. Vis at
g g /n

n n 2 1 )
lim P (ZXk)2§4Zaﬁ/3> :2/ ——e P2 4t
! ( k=1 k=1 0 V2

s

(4) Antag i dette spgrgsmal at a, = a > 0 for alle n > 1. Gor rede for at (Q),),>1 er

konvergent i fordeling og bestem graensefordelingen, hvor

Z:l:l()(l2 - a2/3)
2imy X7

(5) Beregn den karakteristiske funktion for X, samt vis at

Q1= n>1.

Z X, summabel i sandsynlighed & Z al < oo.

= | n=1

Det kan her uden bevis benyttes at ¢t —sint > ¢*/8 for 0 <t < 1.

Opgavesattet fortsaettes
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Naturvidenskabelig kandidateksamen. 1.del. Vinteren 2001/2002
Sandsynlighedsteori 2 Side 2

Opgave 2

Lad (X, ).>1 betegne nafheengige stokastiske variable, som alle er F(\)-fordelt, hvor A > 1
d.v.s. X,, har for ethvert n > 1 teethedsfunktion f givet ved

{/\-e“\z x>0

)

fz) =

0 z <0

Definer S, :=3"}_, Xy og F,, := 0(X1,...,X,) for n > 1.
(1) Beregn E[X)] og E[e**] for alle a € R.

(2) Gor rede for at processerne

(Sn -n- /\_l)nzl og (65" : (___/\_)n)
n>1

er martingaler m.h.t. filtret (F,,),>1.

(3) Definer for a > 0
7, :=inf{n > 1|5, > a}.

Vis at 7, er en endelig stoptid m.h.t. filtret (F,)n>1.
 (4) Vis at 7, er optional for (S, —n-A71),>1 samt at E[r,] > a - \.

(5) Antag i dette spgrgsmal at A = 2. Definer for 0 < b < 1

op :=inf{n > 1] /2" < b}.

Vis at o3, er en endelig stoptid, som ikke er optional for (es"/Q”)n>l.

V.

" (6) Angiv fordelingen for S, og beregn E[r,] for ethvert a > 0.

/(7) Bestem fordelingen for S,, — a for ethvert a > 0.

Opgavesaettet fortsettes
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Naturvidenskabelig kandidateksamen. 1.del. Vinteren 2001/2002
Sandsynlighedsteori 2 Side 3

Opgave 3

Lad (X, ),>1 betegne uafheengige stokastiske variable, sa at X, ~ po(A,,) for ethvert n > 1,
hvor A, > 0, d.v.s. X, er Poisson fordelt med parameter A, for alle n. Definer

n

D = ZXk for n > 1.

k=1

Det oplyses, at hvis Y er en stokastisk variabel, som er Poisson fordelt med parameter

A >0, doves. Y ~ po(A), saer E[Y?] =A% 4 3)A? + \. (dette skal ikke bevises)
(1) Vis at E[e=X1] = e=}(=¢7") og angiv fordelingen for S,.
(2) Vis at

lime™" =0 P-n.o. < Z/\n = 00.

n=1

(3) Vis at
lim\, =1 = S,/n—1 i L*(P) og i sandsynlighed.

(4) Vis at hvis 1 < A, < 2 for alle n, sa gelder

lim P(S, — ) Ap >0) =1/2.
" k=1
(5) Vis at hvis A, ’erne er begraensede, sa gaelder

lime™> . H M=) — 0 P, Z An = 00.
k=1

n=1
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Naturvidenskabelig kandidateksamen. 1.del. Sommeren 2002
Sandsynlighedsteori 2 og Statistik 1 Side 1

Opgave 1

Lad (X;),>1 betegne en fglge af uafhengige identisk fordelte stokastiske variable, sa at X; ~
N(0,3), d.v.s. normalfordelt med middelverdi O og varians 3. Lad endvidere (a,),>1 betegne

en reel talfglge.

Definer
Eni=2- (I{X,,>O} - 1{X,,<0]») n>1.
1) Beregn
E[&1], Var(&;) og Cov(&1,&).
2) Vis at

Z a,zl < oo = Z a,X, summabel P-n.o.
n=1 n=1

3) Angiv fordelingen for S, := Y, X; og E[S,, | £1] samt beregn ¢ — E[e5n].
i=1 g

4) Vis at
Z anX, konvergenti Ll (P) = Z a;7; < oo,

n=1 n=1

5) Ggr rede for at
-\ 2
(X &/ Vi)
logn
konvergerer i fordeling og angiv middelvardi og varians for grensefordelingen.

6) Vis at

Z an&, konvergerer i sandsynlighed < Z a,z, < oo,

n=1 n=1

Opgave 2

Lad (X, ).>1 betegne en fglge af uatha@ngige identisk fordelte stokastiske variable, sa at X; ~
po(1/2), d.v.s. Poisson fordelt med parameter 1/2.

Opgavesattet fortsettes
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Naturvidenskabelig kandidateksamen. 1.del. Sommeren 2002
Sandsynlighedsteori 2 og Statistik 1 Side 2

Definer .
No:=0 og N, := ZX,- n>1,

i=1

samt
Fn = G(NO---JV)I) nz> Oa

og s@&t S, := 10+ N, —nforn > 0.

1) Ggr rede for at

(Sn, Fn)n>o0 er en supermartingal, og (S, +n/2, F)u>0 er en martingal.

2) Vis at
limS,/n=—1/2 P-n.o.
n

3) Definer
t:=inf{n >0]|S, <0}.

Vis at T er en endelig ( F,),>0-stoptid og beregn P(t < 10).

A 4) Gogr rede for at enhver (7, ),>0-stoptid 6, som har endelig middelverdi, er optional for

(A’n - n)nzo-
{_5) Beregn E[1].

¢ 6) Vis f.eks. ved brug af Middelvardis@tningen at
lim <\/N,, = \/n/2>
n

eksisterer i fordeling og angiv grensefordelingen.

§\\
Opgave 3 ~__

s

I papir teknologi err_d,et..;és\émﬁgtm__‘have metoder til at vurdere fibrenes orienteringsforde-

ling._/Oﬁenfe”riﬁésfordelingen kan bestemmes ved at telle antal snitpunkter mellem fibrene og

Opgaveszattet fortsettes
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Naturvidenskabelig kandidateksamen. 1.del. Sommeren 2003
Sandsynlighedsteori 2 og Statistik 1 Side 1

Opgave 1

Lad (Y,).>1 betegne uathengige stokastiske variable, sa at ¥, ~ I'(a.,, 1) for et reelt tal o, > 0
for ethvert n > 1.
Definer for n > 1

S, = i Yo, My, :=20+F0) o=Si o0 g :=0(Y,...,Y,).
k=1
Det oplyses, at hvis Y er en I'(, 1)-fordelt stokastisk variabel, sa er (dette skal ikke bevises)
E[(Y —a)*] <6- (a2 +a).
1) Vis at E[e™"1] = 27* og angiv fordelingen for S,,.
2) Ggr rede for at (M,,, F,),>1 er en martingal, og at lim, M,, eksisterer P-n.o.

3) AntagatO<a < o, < b <o forallen > 1. Vis at

. n
S_n...__z_k_:_l_gl.(_ :, N(O,l) og at

Sn
\ ZZ:I Olg ZZ:I Ok

— 1 P-n.o.

4) Gogr rede for at
t:=inf{n > 1|M, > 10} hvor inf(0) :=

er en (F,)-stoptid og vis at P(T < =) < 1.

5) Vis at T+ 1 er optional for (M,,),>1, hvis o, erne er opad begrenset.

Opgavesttet fortsaettes
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Naturvidenskabelig kandidateksamen. 1.del. Sommeren 2003
Sandsynlighedsteori 2 og Statistik 1 Side 2

Opgave 2

Lad (X,).>1 betegne en fglge af Poisson fordelte stokastiske variable, d.v.s.for alle n > 1 er
X, ~ po(M\,) for et reelt tal A, > 0.

1) Beregn
E[(2X;+1)*] og E[e ?1].

2) Vis at

X,
—K—" — 1 isandsynlighed og i L?
n

hvis A, — oo.

3) Antag i dette delspgrgsmal yderligere at X,,’erne er uath@ngige. Angiv for ethvert n > 1

Z (Xi — M),

den karakteristiske funktion for

og vis at

Z (X, —Ay) er summabel P-n.o. & Z (X, —A,) er konvergenti L'.
n=1

n=1

4) Ggr rede for at (X, ),>1 er stram (tight), hvis og kun hvis (A,),>1 er en begranset talfglge.

5) Vis at hvis X,, = X, sa er X Poisson fordelt eller P(X=0)=1.

Opgavesettet fortsettes
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