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Supplerende noter til 3MI Mikael Rgrdam
Mal og integralteori
Eksistensen af Lebesguemailet pa R

Denne fremstilling er baseret pa s. 28-34 i G.B. Folland’s “Real Analysis” og pa noter
udarbejdet af Uffe Haagerup.
Vi kridter banen op med en generel diskussion om konstruktion af mal.

Definition 1 Et mdlrum (X,E, 1) kaldes fuldsteendigt, hvis alle p-nulmengder ligger i
E.

Bemeerk, at (X, E, u) er fuldsteendig, hvis og kun hvis det for alle E € E med u(E) = 0,
og alle N C E gelder, at N € E. Af og til vil man sige, at p er fuldsteendig i betydningen
(X,E, p) er fuldstaendig, nar X og E fremgar af sammenhzangen.

Fuldstzendige mal er diskuteret i opgaverne 3.15-3.18 i noterne. Fuldstzendige mal er

bekvemme at arbejde med, bl.a. p.g.a. folgende setning, som til dels er bevist i Opgave
3.18.

Seetning 2 Lad (X,E, ;i) vere et fuldstendigt malrum, og lad (Y, F,v) vere et vilkdrligt
andet mdlrum (ikke nodvendigvist fuldstendigt). Hvis f: X — Y er E-F-madlelig, og hvis
9: X =Y opfylder g = f p-n.o., sa er g ogsa E-F-madlelig.

Til ethvert malrum (X, E, ) kan man konstruere et nyt malrum (X, E, 1), som er fuld-
steendigt, og som opfylder E C E og fi|z = i (se Opgave 3.17). Dette nye malrum kaldes
fuldstendiggorelsen af (X, E, u). Det Lebeguesmal, vi nu skal konstruere, bliver automa-
tisk fuldstaedigt, sa vi far ikke brug for denne fuldstaendigggrelsesmaskine.
Konstruktionen af Lebesguemalet gar via ydre mal. Disse er knapt sa fine som mal,
ved det, at de ikke ngdvendigvis er teelleligt additive, men blot teelleligt subadditive:

Definition 3 Et ydre mal p* pa en mengde X er en funktion p*: P(X) — [0,00], som
opfylder

(i) w(@) =0,

(i1) p*(A) < p*(B), hvis A,B € P(X) og A C B,

(iii) 1" (U2 An) < 352, 1 (An) for enher folge {A,}52, € P(X).
Til et ydre mal betragtes en serlig delfamilie af delmaengder af X:

Definition 4 Lad p* vere et ydre mal pa mengden X. En delmengde E .af X kaldes
p*-malelig, hvis der for alle A € P(X) geder

p(A) = (AN E) + p*(ANCE). (1)

Definition 3 (iii) giver u*(A) < u*(AN E) + u*(ANCE) for ethvert par A, E € P(X). Vi
har derfor, at E' er p*-malelig hvis og kun hvis den anden ulighed,

p(A) > p (AN E) + p*(AnCE), (2)
geelder for alle A € P(X).



Definition 5 En familie A af delmengder af en mengde X kaldes en algebra, hvis
(i) X € A,
(ii) A€ A medforer CA € A,

(iii) A, B € A medfprer AUB € A.

Enhver o-algebra er en algebra. Det modsatte gaelder ikke, men vi har folgende lemma,
hvis bevis overlades til lzeseren (= en opgave til gvelserne!):

Lemma 6 Lad A vere en algebra pé mengden X, og antag A er afsluttet under teellelige

disjunkte foreninger, dvs. for alle folger {A,}, af parvis disjunkte mengder i A geelder
UrZ, A, € A

Da er A en o-algebra.

Theorem 7 (Carathéodory’s Seetning) Lad u* vere et ydre mil pa en mengde X .
Lad E veere familien af alle p*-madlelige delmengder af X. Lad p vere restriktionen af pu*
tlE, dvs. p:IE — [0, 00] og u(E) = p*(E) for E € E.

Da er (X,E, p) et fuldstendigt mdlrum.

Beuvis: Det skal vises, at E er en o-algebra, at u er et mal pa E, og at u er fuldsteendig.
Det fglger umiddelbart af (1), at E € E medfgrer CE € E, og at 0 og X begge ligger i E.
For E,F € E og A € P(X) har vi

p(A) = p(ANE)+u(ANCE)
= WANENF)+p (ANENCF) +p*(ANCENF) 4+ uw*(ANCENCF)
> ' ((ANENF)U(ANENCF)U(ANCENF)) + u*(ANCENCF)

= p(AN(EUF))+u (AnC(EUF)).

Dette viser, at E, F' € E medfgrer E U F € E. Det er nu vist, at E er en algebra.

Lad nu {E,};2, veare en folge af parvis disjunkte maengder beliggende i E Seet F,, =
Uj-, Ej, og bemark, at F,, € E, da E er en algebra. Seet F = Uiz E5 (= UpZ, Fr)-
Hovedslaget der skal udkaempes i dette bevis, bestar i at vise:

p(4) =p (ANF) + p(AnCF) = iu*(A NE;) +u (AnCF), (3)

for alle A € P(X).
For at se (3), bemeark forst

A=(ANF)u(ANCF) = <UAmE) (ANCF).
Sammen med Definition 3 (iii) giver dette

p(A) < (ANF)+up(AnCF) < i (ANE;) + u*(AnCF). (4)



Omvendt, for alle n > 2 har vi
WANE)=p(ANF,NE,) + p (ANF,NCE,) = p (AN E,) + (AN F,_,).

Det folger heraf ved induktion, at

n

pANFE) =) u(ANE)),

J=1

for alle n > 1. (Til grundtrinnet n = 1 benyttes at F, = E;.) Ved at benytte CF C CF,
og (ii) i Definition 3 far vi

p(A) = p(ANF)+u (AnCF,)

= ) W(ANE;) +u*(ANCF,)

j=i

> > u(ANE) +p (ANCF).

j=1

Da dette geelder for alle n € N, har vi Y (AN E)) + p*(ANCF) < p*(A). Sammen
med (4) viser dette (3).

Det fplger umiddelbart af (3), at F' € E. Derfor er E afsluttet under teellelige disjunkte
foreninger, sa E er en o-algebra jvf. Lemma 6. Seettes A = Ui, Ej (= F) i (3), far vi

o0

(U E) =3 u(Ey).

j=1

(Husk at u(E) = p*(E) for E € E.) Dette viser, at p er et mal pa o-algebraen E. Vi
mangler nu blot at vise, at p er fuldsteendig. Lad hertil E € E og N C E med pu(E) = 0
veere givet, og lad A € P(X). Da er

P (ANN) +p (ANCN) < p*(E) + p*(A) = p(A).
Betingelsen (2) er saledes opfyldt for N, sa N ¢ E. [

Vi vender os nu til konstruktionen af Lebesguemalet pa den reelle akse.

Et h-interval er et delinterval af R af formen (a, b], (a,0), eller §, hvor —co < a <
b < oo. Mangden af alle h-intervaller bensevnes med I.

Bemerk, at hvis I er et h-interval, si er CI en disjunkt forening af to h-intervaller,
hvis I = (a,b] og —0o0 < a < b < o0, og [I er selv et h-interval i alle andre tilfzelde.
Snitmeengden af to h-intervaller er igen et h-interval.

Definer ¢:T — [0, 0o] ved ¢((a, b]) = b — a, ¢((a,)) = oo, og £(B) = 0.

Definer m*: P(R) — [0, oo] ved

3



Strategien er nu at vise, at m* er et ydre mal, at alle h-intervaller er m*-malelige, og at
m*(I) = £(I) for alle h-intervaller I. Dette gores i nedenstaende lemmaer. Herefter giver

Carathéodory’s sztning det gnskede resultat om eksistensen af Lebesguemalet (Theorem
13).

Lemma 8 m* er et ydre mal.

Bevis: Det skal vises, at (i), (ii) og (iii) i Definition 3 holder. (ii) er en umiddelbar kon-
sekvens af definitionen af m* (overvej dette!). (i) indses let ved f.eks. at veelge I; = I, =
L= =0

For at vise (iii), lad {A,}32, veere en vilkarlig folge i P(R). Hvis m*(A,) = oo for
mindst et n, sa gelder uligheden m*(J;”, A,) < 3°°° m*(A,) trivielt. Antag derfor
gerne, at m*(A,) < oo for alle n. Lad & > 0. Find for alle n folger {In;}52, 11, 54

[oJ n], f:g([n,]) < m*(An) + 27 "¢,

=1

<.

Da er {I, ;}%,-; en tellelig familie i I, og

[]Ang G B s i I gi n) +27%) = im*(An)+5.
j=1 7,m=1 n=1 n=1 n=1

Dette viser, at m*(U,~_; 4n) < Y oo, m*(A,) +e¢. Da dette holder for alle ¢ > 0 folger det
gnskede: m*( ;2 An) < 307 m*(A,). O

Lemma 9 Alle h-intervaller er m*-malelige.

Beuis: Lad I veere et h-interval. Vi viser, at I er m*-malelig ved at eftervise (2).

Lad A € P(R), og betragt hertil en vilkarlig folge {.J,}2%, af h-intervaller s A C
Un—; Jn- Som tidligere bemeerket er CI foreningen af to disjunkte h-intervaller I’ og I”
(det ene af disse h-intervaller kunne veare den tomme mangde). Saet

K. =Ink, K, =InlJ,, K =1"nJ,.
Da er K, K;,, K, parvis disjunkte h-intervaller, og .J, = K, U K! UK". Derfor er ok =
((Ky) + ((K)) + ¢(K]) (overvej). Endvidere gaelder

ANIC GK,“ AmI’gGK{l, Am["g@l{,’{.

n=—1 n=1 n=1

Samlet har vi

> s = Ze +Z€K’ +Z€K”

> (AmI)+m(AmI) m*(ANn1"),



hvor > skyldes (5). Da overdakningen {J,}2°, af A var vilkarlig, kan vi igen ifelge (5)
konkludere, at

m*(A) m (ANI)+m*"(ANT)+m*(AnTI")
m*(ANI)+m*(An(I'UuI"))

= m"(ANI)+m*(AnCI).

>
=

Det ses nu, at (2) er opfyldt, sa I er m*-malelig. O

Lemma 10 Huis .
[a,b] C U (aj, b;

hvor a <b og a; < b; for j =1,2,...,n, sd er

b—a S Z(b] — (lj).
J=1

Beuvis: Beviset fores ved induktion efter n. Overvej selv situationen for n = 1. Antag
n > 2, at [a,b] C U;_,(a;,b;), og at pastanden i lemmaet er vist for alle overdekninger
med feerre end n intervaller. Find jo € {1,2,...} sd a € (aj,,b;,). Hvis bj, > b, si er
la,b] C (ajo,bj,), 0g sagen er klar!

Antag b, < b. Da er

[bjov b] [aa b] \ (ajm bjo) C U (aj’ bj)'
J#Jo
Induktionsantagelsen giver derfor b — b, < >° 0 (b — a;). Dermed har vi

b—a = (b—bjo)-l-(bjo*a) < (b_bjo)+(bjo_ajo)

n

< D (b —ay) + (bjy —aj) = > (bj—a). O

J#Jjo Jj=1
Lemma 11 Lad I, 1,15, I3, ... vere h-intervaller, saledes at I C Uo2, I. Da gelder

(1) <) UI,).

=1

Bevis: Hvis I = (), sa er der intet at vise. Antag derfor gerne, at I # 0. Endvidere, hvis
{(I;) = oo for mindst et n, s& er der heller intet at vise. Vi kan derfor ogsa antage, at
{(I,) < oo for alle n. Dvs. I,, = (ay, b,], hvor —co < a, < b, < 00 (idet vi ogsa smider
alle tomme mengder blandt intervallerne I, I, . . . ud).

Bemeaerk, at

((I) =sup{t —d'|d,b' €I, d <V}, (6)

5



nar I # 0. Lad o’,b' € I med o' < ¥ vare givet.
Lad e > 0, og st a;, = an, 0g b, = b,+£27". Daer I, = (an, b, ] C (al,bl),saa,b] C

n»-n

I € Ui, (a},b)). Da [a b'] er kompakt giver Heine-Borel’s seetning [a/, '] C Uj=1 (@}, b))

for et passende stort n.
Det fglger nu fra Lemma 10, at

¥-a < 30~ d)
j=1
< D bi+e27 —a) = Y (UL) +£27) = > o(Iy)
j=1 j=1 j=1

Da e > 0 var vilkarlig, far vi ' —a’' < > 21 (1), og da o', ' ogsa var vilkarlige folger det
gnskede af (6). O

Lemma 12 For ethvert h-interval I er m*(I) = ((I).

Bevis: St [y = I, Iy = I3 =---=0. Daer I}, I, I3,. .. h-intervaller og I C U2, I, sa
m (1) < S U(T,) = €(D)
n=1

ifplge definitionen af m*. Omvendt, hvis {I,}%°, er en fglge af h-intervaller med I C
Unzi In, daer 30 (1) > £(I) ifplge Lemma 11. Dette viser, at m*(I) > ¢(I). O

Theorem 13 Der findes et fuldstendigt malrum (R, L, m), som opfylder B(R) C L og
m((a,b]) =b—a,
for alle a,b med —00 < a < b < c0.

Beuvis: Lad L veere meengden af alle m*-malelige maengder, og lad m vare restriktionen af
m* til L. Carathéodory’s setning giver, at (R, L, m) er et fuldsteendigt malrum. Lemma
9 giver I C L. Da o-algebraen frembragt af I er lig med Borel-o-algebraen B(R) (jvf.
Opgave 1.2), sa giver Setning 1.2 i noterne, at B(R) = o(I) C L.
Endelig, hvis —co < a < b < o0, s er (a,b] et h-interval, og ved at udnytte Lemma
12 far vi
m((a,b]) = m*((a,b]) = €((a,b]) = b — a. O

Ved at tage restriktionen af malet m til Borel-o-algebraen B(R) far vi folgende korollar

til Theorem 13:

Korollar 14 Der findes et mdl m defineret pa o-algebraen B(R), som opfylder
m((a,b]) =b— a,

for alle a,b med —co < a < b < 0.



Hovedsaetning 5.1 i noterne siger, at malet m i Korollar 14 tillige er entydigt.

Mzngderne i o-algebraen L kaldes Lebesguemdlelige mangder. Alle Borel-delmangder af
R er saledes Lebesguemalelige. Det omvendte gzelder ikke. Faktisk har vi

B(R) G L ¢ P(R). (7)

Den fgrste af disse agte inklusioner kan ses ved en kardinalitetsbetragtning, idet
card(L) = card(P(R)) og card(B(R)) = card(R). Den forste af disse identiteter kan indses
ved at benytte Cantor’s meengde Z (se Eksempel 5.22 i noterne). Mangden Z er kompakt
(og dermed Z € B(R) C L), m(Z) = 0, og card(Z) = card(R). Da (R,L,m) er fuldstsen-
dig, har vi P(Z) C L. Dette giver card(P(R)) = card(P(Z)) < card(L) < card(P(R)).
Den anden kardinalitetsidentitet er noget mere kompliceret.

Den anden zgte inklusion i (7) folger umiddelbart af Vitali’s Seetning (Seetning 5.30 i
noterne).

Eksistensen af Lebesguemalet pa R* kan vises pa en tilsvarende, men mere besveerlig,
made. Istedet vil vi, nar tiden er moden, konstruere Lebesguemalet pa R* ved at bruge
teorien for produktmal, som udvikles i noternes §6.

En funktion f:R — R, hhv. f:R — C, kaldes Lebesguemdlelig, hvis den er L-B(R)-malelig,
hhv. L-B(C)-malelig.

Alle Borelfunktioner f:R — R og f:R — C er siledes Lebesguemalelige (da B(R) C
L). Endvidere, hvis f,g:R — R, hvis f er Lebesguemalelig, og hvis f = g m-n.o., sa er g
Lebesguemalelig ifolge Saetning 2.

Lad [a, b] veere et kompakt delinterval af R, og saet

L(la,b) = {EN[ab] | E€L} (=Luy).

Det kan (ret nemt) vises, at ([a, b], L([a, b]),m) er et fuldstzendigt malrum, og at B([a, b]) C
L([a, b]). Bemzerkning i afsnittet ovenfor sammen med den supplerende opgave pa uge-
seddel 6 kan bruges til at vise, at hvis f:[a,b] — R er Riemannintegrabel, si er f €

L([a, b], 1([a, b]), m), og .
dm = z)dzx.
/{a S / /()

Med andre ord, L([a,b],L([a,b]),m) indeholder alle Riemannintegrable funktioner
f:la,b] — R, og Lebesgueintegralet stemmer overens med Riemannintegralet, nar Rie-
mannintegralet er defineret.

Der findes eksempler pa Riemannintegrable funktioner, som ikke er Borelmalelige.
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