WHITNEY'S SETNING FOR PLANE KURVER, N1

Noter om lukkede plane kurver. Geometri I, JEA.

I.1. Lukkede plane kurver og isotopier.
Lad I =0, 1]. Lad os praccisere, hvilke lukkede plane kurver vi en 1ntm(sorot i

Definition 1.1. /n lukket plan kurve er en differentiabel afbildning f : [ — B2,
som opfylder folgende to betingelser:
L. Den er lukket: f(0) = f(1), f%(0) = fH(1) Yk € V.
2. Den er veguleer: f'(1) £ 0 Vit € I.
Eksempel.
L. Cirklen: For t € [ definerer vi
ci(t) = (cos(2mt), sin(2mt)).
Dette parametriserer enhedscirklen.
[.2. Den n-foldte dobling af cirklen: Lad n € 7, sa n # 0. For t € I definerer vi
c,(l) = (cos(2mnt), sin(2mnt)). ' '
Nar t lober fra 0 til 11 7, lober ¢, rundt langs enhedscirklen n ga,nge;
[.3. Lad
co(t) = (sin(2xt), sin(4x7t)), Vi € .
Vi har da at
co(t) = (27 cos(2mt), 4m cos(4mt)) # 0
idet der for t € I gaelder

l 3
cos(2mt) =0 &t = — eller —
4 !
og
: I 35 7
cos(4nt) =0 & t = =, =, = eller y
S 88 3

Altsa ¢y er en lukket plan kurve.

Vi gnsker nu at indfore en aekvivalensrelation ~ pa maengden af lukkede plane kurver.
To lukkede plane kurver skal veere akvivalente, hvis den ene kan deformeres over i
den anden. Det formaliserer vi pa folgende made.
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of
Definition 1.2. 7o lukkede plane kurver fo awt’f, er akvivalente, og vi skriver fo ~

Ji. hois der findes en differentiabel afbildning F = I x [ — B2, som opfylder
. Fori=0,1 har vi at F|; = fi
2. For alle s € [0,1] er Flrxgsy en lukket plan kurve.

Bemaerkning.
En afbildning med samme egenskaber som /i denne definition kaldes en isotopi [ra
Jo til fi.
Eksempel.
L4 Lad r: [ — Ryere en differentiabel funktion saledes 7(0) = r(1) og r*)(0) =
ri®(1), Vk € M. Lad ¢(t) = (cos(2xt),sin(27t)) veere enhedscirklen og f(t) =
r(t)ey(t). WxisiH )74 051 €1 sa er [ en lukket plan kurve. Vi pastar at ¢; er
ackvivalent med [: Betragt
Folx Il —R?

givet ved

F(t,s) = (sr(t) + (1 — s))ei(t). € CZF(Tx1  RE)
Da er F'(1,0) = ¢ (1) og F'(1,1) = f(t). Vi udregner

ar , /

Sr(1s) = st (Derlt) + (sr(t) + (1= ) (1),
Men idet ¢;(t) L ¢\ (1), folger det al antagelserne pa r at —'5 #0V(t,s)e [ < 1. Det
er ogsa let at se dt F'| 1« sy virkelig er en lukket plan kurve. Altsa F er en isotopi fra
ey til f.
Dette eksempel passer fint med vores onske om at ~ skal formalisere begrebet defor-
mation,
Qvelse.
[.1. Bevis at ~ er en akvivlensrelation. D.v.s. for alle lukkede plane kurver f, ¢ og
h skal der gaelde at
e g ,
/N(j:>J~fs(m]t
/~(/05J~/1:> f~h.

. =

2
3.

Al ovelsen har vi altsa at ~ klassedeler maengden al lukkede plane kurver. Vi
onsker nu at forsta denne klassedeling. Med andre ord, vi ensker at forsta, hvornar
to lukkede plane kurver er @wkvivalente. Whitney’s saetning giver svaret pa det. Lad
os forst vise nogle elementare lemmaer.

Lemma 1.3. Huvis [ er en lukket plan kurve ogr € By, sa er f ~rf.



Bevis.

Lad [7: [ x [ — B* vaere givet ved F'(t,s) = (sr + (1 —s))f(1). Daer
ol .
5 —(ts) = (sr+ (1 —s))fi(1),

sa 2% # 0 V(s,t) e [ xI.Det er klart at I'|1x sy er en lukket plan kurve. Altsa F er
en lsolopl fra f til rf.
Od

Lemma 1.4. Lad ¢ : [ — [ vare en differentiabel afbildning sdaledes $(0) = 0,

o(1) = 1, oM(0) = ¢P(1), Yk € I og (1) # 0Vt e I. For vilkirlig lukket plan )

kurve [ har vi at f ~ fo¢.

Bevis.

[det &(0) < (1) og &'(t) # 0 ma ¢'(1) > 0Vt € [. Betragt sa folgende differen-
tiable afbildning

F:IxI—R?
givet ved
F(t,s) = f(s(t) + (1 — s)t).
Vi ser at o
S5 = TG0 + (1= (00 + (1= 5)) # 0

idet

s—1

S
ikke kan loses for (t,s) € [ x [. Endvidere ses det let at [ opfylder resten af
betingelserne for at vaere en isotopi fra f til f o .

O

Lemma 1.5. Lad [ vare en lukkel plan kurve. Da er [ akvivalent med en lukket
plan kurve g som er parametriseret ved buelangde.

Bevis.

Lad L = ,’;)1 |[/(1)]|dt. Seet [, = %/ Da er fi en lukket plan kurve og f; ~ [ ifolge
lemma 1.3.

Lad ¢ : I — [ veere den differentiable afbildning bestemt ved at fi0¢ er parametris-
eret ved buelaengde og ¢(0) = 0. Bemark at ¢ er den inverse funktion til ¢
/u[ |f1(T)|d7. Derfor er ¢ (lehn(u pa [ og ¢'(t) > 0¥t € [. Endvidre er ¢(0) =
0. &(1) = 1 og ¢M(0) = &W(1)VE € II. Daer g = f1 0¢ en lukket plan
kurve parametriseret ved buelaengde og af lemma 1.4 folger af fi ~ ¢g. Altsa [ ~ g¢.

O

Proposition 1.6. Lad [ vare en lukket plan kurve. Da findes der en lukket plan
kurve g som er akvivalente med [ og som opfylder al



1. ¢(0) = (0,0),
2. ¢'(0) = (1,0) og
3.

g er parametriserel ved buelangde.

Bevis.

Lad f vere en lukket plan kurve. Af lemma 1.5 findes der en lukket plan kurve f;
som er wkvivalent med [ og fy er parametriseret ved buelengde. Lad 6, € [0, 1)
veere bestemt ved f{(0) = (cos(2m0y), sin(276y)) og saet

v = R(—0)[0(0),
hvor vi lader R(p) veere rotationen med med vinklen 2mop:

cos( ) —sin(2my)

Rip) = Cme 4
AEIT sin(2rg)  cos(2me) '

F(t,s)= R(—sby) fo(l) — sv ¥(t,s) € [ x I.

Lad nu

Det er klart at /' er differentiabel og ], ¢y er en lukket plan kurve, sa [ er en isotopi
fra fo = Flicoy til g = Flicpy. Altsa [ ~ fy ~ g. Viser at g er parametriseret ved
buelaengde, ¢(0) = (0,0) og ¢'(0) = (1,0).

O
.2. Graden af en plan kurve.
For at kunne definere graden af en lukket plan kurve skal vi bruge folgende lemma.

Lemma 1.7. Lad g : | — B* vare en differentiabel afbildning, saledes |g(t)| =
I YVt e l. Da findes der en differentiabel funktion 0 : 1 — B saledes

g(t) = (cos(2m0(1)),sin(270(t))) YVt € I.

Bemsaerkning.
For en lukket plan kurve [, vil f'/]f'| vaere en differentiabel funktion som ¢ i lemmaet.
En differentiabel funktion 0 : [ — P saledes

S = /(D] (cos(2mO(1)), sin(270(t))) Vi e I,
kaldes for en tangentvinkel for f. Sadanne eksisterer per lemma 1.7 og vi observerer

i det tilfeelde at (1) — 6(0) € 7, idet [ er lukket.

Bevis.
Lad 0y € [0, 1) vaere bestemt al ¢(0) = (cos(2m6y), sin(276y)). Definer differentiable
funktioner x,y : [ — P ved

g(t) = (x(t),y(t)) Vte 1.



Seaet 0 : 1 — P til
I‘ ! I /
000 = o+ 5 [ (1) = o) (5)) .
2T Jo
Betragt sa
E(t) = (x(t) = cos(2m0(1)))* + (y(t) — sin(270(1)))*
= 2 —=2(x(t)cos(2mO(t)) + y(t)sin(2wO(L))).
Lad os nu udregne F.
E' = 2(—22msin(270)0" + y27 cos(2m0)0’ + &' cos(2m0) + y'sin(276))
= —y'sin(270)(x® + y*) — &' cos(2m0) (2?4 y*) + & cos(270) + v sin(270)
=

Men idet F(0) = 0 folger lemmaet.
O

Lemma 1.8. Hvis I er en isolopi af lukkede plane kurver, sa findes der en differ-
entiabel funktion
0:1 <1 =R,

saledes at O]y (s, er en tangentvinkelfunktion for den lukkede plane kurve Flrxgsy-

Bevis. 7
Vaelg 00,0y sa %(().U)/|%(O,())] = (cos(2m0y0)), sin(2m0 o 0))). Definer differentiable
funktioner w,y: [ x [ — B ved

S (ths) = (x(t,s),y(t,s)) V(L s) e I x 1.

|55
At

Lad sa

O(t.s) = O + /( (0, a)(j (0,0) — y(0, a)j (0, a)> do

J0

Af dy dr ‘1?
—h% < T \)()f( s) = y(7,5) )/( ~~*)> dr. -

Af argumenter som er analoge til beviset for lemma 1.7 ses at 01«5y er en tan-
gentvinkelfunktion for den lukkede plane kurve /], (. Det er klart fra formlen for
0, at den er differentiabel.

Od

Definition 1.9. Lad [ vare en lukket plan kurve og lad 0 vare en tangentvinkelfunk-
tion for [. Graden for d(f) € 7. for [ defineres da til at vare . MH

d(f)=0(1)—0(0). (hek & b o
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1.5. Betragt den n-folde double ¢, af cirklen: > Jpeé
O= 0D

cu(t) = (cos(2mnt), sin(27nt)).
B Ay
Vi ser at tangentvinklen for ¢, er 0,(1) = nt. Altsa har ¢, grad d(c,) = n.
[.6. Hvis [ er en lukket plan kurve | sa kan vi definere en ny lukket plan kurve ved
f(l) = f(l—=t)Vtel. Viser at _/"’(/) = —f"(1 —1t). Hvis nu # er en tangentvinkel for
fog 0 er en tangentvinkel for f. si har vi altsa at 200(1) — 0(1 — 1)) € 7, uathaengig

af t per kontinuitet. Da har vi at

d(f) = 0(1) = 0(0) = 0(0) — O(1) = —d(f).

[.7. Betragt co(t) = (sin(27t).sin(47nt)). Lad 0y veere tangentvinkelfunktionen for .

[det co(1 — 1) = —co(t) folger ¢4(1 — ) = ¢)(t) Vi € I. Lad nu ¢y(t) = co(l —t). Af

forrige eksempel er d(cy) = —d(¢y). Men ¢&(1) = —ci(1 —t) = —c)(1), sa 2(0y(t) —
Oo(t)) € 7 og derfor konstant, hvor 8y er tangentvinkelfunktionen for ¢y. Da folger at

d(co) = 00(1) = 0(0) = 0u(1) — By(0) = d(co).
Vi kan altsa konkludere at d(c¢y) = 0.

Lemma 1.10. Lad [ og g vare lukkede plane kurver. Da har vi at

¥

Bevis.
Lad [ veere en isotopi fra f til g. Lad 0 : [ x [ — B veere tangentvinkelfunktionen
for I som konstrueret i lemma 1.8. Vi bemarker at afbildningen s — d(F|;. ) =
O(1,s) — 0(0,5) er kontinuert. Men da d(F];. () € 7, ma denne afbildning veere
konstant. altsa

d(f)=d(F|ic0y) = d(Flixqy) = d(g).

[.3. Whitney’s saetning.
Seetning 1.11 (Whitney). Lad [ og g vare lukkede plane kurver. Da kan [ de-

formeres over ¢ g hvis og kun hvis [ oq g har den samme grad, allsa

f~g&df)=dyg).

((’;‘ré\f{h,\ P e ‘ H; @ “?‘7 1 A } {

~ : 5 ‘
Huts - T ota N J\. 1)1!"- Pt Jln e

[~g=dif) = d(g). (t e impartont
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Whitney skriver selv i sin artikel [2], at det faktisk var W.C. Graustein som foreslog
denne seetning, samt et bevis for den til Whitney. Saetning kendes dog udelukkende
under navnet Whitney idag.

Vi skal bruge folge lemma i beviset for Whitney’s s@tning.

Lemma 1.12. Lad 0 : [ — B vare en differentiabel funktion og definer den differ-
entiable funktion [ : 1 — B? ved

S(t) = (cos(2mO(1)),sin(270(1))).

Da er
L)ydt) =1 hvis og kun hvis 0'(t) = 0 Yt € 1.

Bevis. o e hanbakith: Lor inkarle
Lad v = /“ f(tydt. Det er klart at [o| <1 og ll\ls 0 er ]\()nst(ml saer o] = 1. Antag
nu |[v] = 1. Da ses at - /

—) = ,

. o1

= |v- / f(t (/I / ol f(1)]] cos p(t)|dl = / | cos p(1)]dt,
J0

hvor ¢(t) er vinklen mellem v og f(#). Hvis 0 ikke er konstant, sa er o heller ikke
konstant. Da vil der findes et abent interval .J al [ og et ¢ > 0 sa o(t) > ¢ Vt € J.
Det folger da at

1
/ | cos p(t)|dt < 1.
Jo

Det er en modstrid med det tidligere. Altsa 6 er konstant.

Bevis for Whitney’s satning.
Antag f og ¢ er lukkede plane kurver . Hvis f ~ ¢, sasiger lemma 1.10 at d( f) = d(g).
Antag omvendt at d(f) = d(g) = d € 7.. Vi onsker sa at vise [ ~ g.

Af Proposition 1.6 kan vi finde lukkede plane kurver fy og fi sa [ ~ [y 0g g ~ [,
saledes

b Rl0) = (0,8

2. f1(0) =(1,0) og

3. [ er parametriseret ved buelengde.
Vi skal nu blot bevise at fy ~ [j.
Lad 0; veere tangentvinklen for f; som opfylder at ;(0) = 0 og

F(1) = (cos(2m0;(1)), sin(270;(1))).

Per antagelse har vi at

Oo(1) = d(Jo) = d([) = d(g) = d(f1) = 0:(1).
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LLad os definere

0:1 <1 —P
ved
O(t,s)=s0,(1)+ (1 —s)0(1)
og
H:IxI—R?
ved

H(t,s) = (cos(2mO(L, s)),sin(2w0(t, s)).
Det folger at H er differentiabel. Definer sa I': [ x [ — B? ved

ot .1
I'(t,s) = / H(r,s)dr — I/ H(r,s)dr.
<0 J0
Funktionen /' er differentiabel og
IF dF
—(l,s) — —(0,s) = H(1l,s) — H(0,s) = (
5 1r9) 3¢ (0:9) (L.s) (0,5) =0
idet .
. m"/ \»: ©
O(1,5) = 000, 5) = s0; (1) + (1 = 5)0p(1) = (s0,(0) + (1 = 5)0u(0)) = Oo(1) € Z.
Endvidere ses at bk, &, ()= ©,01)

ot .1
F(t,1) = / Ji(r)dr —t / fi(r)dr = fi(t)Vte I
J0 J 0

for « =0, 1. Hvis der geelder at
or
ot

da er [ en isotopi fra fy til f; som onsket.

(1) £0Y(t,s) e x I,

Lad os modsat antage der findes (1y,sy) € I x [ sa

o
BY ( Uw*()) — U.

Da folger at
1
I[(/(J,.\'()) = / II(T, H(,)([T.
0

Af lemma 1.12 ses at funktionen ¢ — 0(f,s¢), ¢ € I er konstant. Da fas, idet 0,(0) =
0,(0) =0 at
""‘U()l(,) + (l — Nu){)()(/) = O Vf € [ =

S0

0o(1) = (1) Vil

S0 T
i(l(\tv S0 ?é 0. l

I
|
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Hvis d # 0 er Oy(1) = 6,(1) = d # 0, sa da kan der ikke findes et sadant sq. Altsa
i det tilfaelde er /7 en isotopi mellem fy og fi og derfor er fy ~ f; som onsket.

Hvis d = 0 og vi har at 6, ikke er propositional med #,, sa har vi igen at I er en
isotopi mellem fy og fi, altsa fy ~ fi igen som ensket.
Lad us nu antage vi er i det specielle tilfaelde, hvor

S0

Bo(t) = 0,(1) Yt el

50 — 1

Vi vil da modificere konstruktionen af isotopien som folger.
Lad ¢ : [ x [ — P viere en differentiabel funktion som opfylder: Der findes ¢ > 0
saledes

L. e(t,s) = s, nar en af ulighederne t < ¢, s <¢, 1 =1 < ¢, 1 —s < ceroplyldt.

2. ¢|1xisy er ikke konstant lig sg. B s et
Definer sa 0 : [ x [ — ® ved =

0(t,s) = c(l.s)0,(1) + (1 — (L. s)0o(t) Y(t,s) € I x I,

og lad H og I' vaere defineret udfra 6 som H og I er defineret udfra 6 ovenfor. Idet
()[( l) = {)(J(l) = ()1(0) - ()U(O) =0er (l("t ](’t at se at
ol ol
—(l,8) — —(0,5) =0 Vs e [.
gy \1#) ~ 5y (0:) -
Vi ser ogsa at F(t,i)= fi(1) Yt e [ for i =0,1.
Hvis der findes (fy, 39) € [ x [ sa
or .
—(tgy, 50) =0,
()[ ( 0 ())

er I = 0(1,50), t € [ konstant af samme argument som ovenfor for I og derfor fas,
idet 0(0) = 6,(0) = 0 at

((/,:-U)()l(/) +(l - (‘(/.,.;U)){}()(IL) — 0 Vf S [ =

c(t,s
bo(t) = —L%0) g vie
('(/ﬂ .H'()) — l
hvilket er en modstrid, idet ¢(¢, 50) ikke er konstant lig s,.
Altsa folger at [ er en isotopi fra [y til f; som onsket.
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[.1. Whitney’s formel for graden af en generisk lukket plan kurve.

Definition 1.13. Lad [ vare en lukket plan kurve. Vi siger, at p € R? er et simpelt
dobbelt-punkt for [, hvis
L. Der findes pracist to tal t,ty € I, sa f(ty) = f(l2) = p eller hvis der findes
pracist et tal t € (0,1) sa f(0) = f(t)= f(1) =p.
2. Vektorerne f'(ty) og f'(12) er lineart vafhangige.

Eksempel.
Betragt ¢o(1 ) = (sin 27, sindxt). Viser at (0,0) € B* er et simpelt dobbelt-punkt
for cq, idet ¢;'(0,0) = {0, L1}, ¢h(0) = (27, 47) og cp(3) = (=2m 4m).

Definition 1.14. Lad [ vare en lukkel plan kurve. Vi siger, at [ er en generisk
lukket plan kurve, hvis der findes forskellige tal ty,. ... ty, € I, sa

Lo f(teimr) = [(t2) er el simpelt dobbelt punkt fori=1,..., n.

2. -/.l[_{UJI«----/'_zn-l} er 7"’[;/’(”'/\7/1‘.'['.

Bemeerkning.

Vi ser at c¢_,, ¢y og ¢, er eksempler pa generiske lukkede plan kurver, hvorimod ¢
{-5 1 ] I =) l n

for [n| > | ikke er det. Det er faktisk rigtigt, at enhver lukket plan kurve kan gores

glig I g

generisk ved en vilkarlig lille deformation, altsa en vilkarlig lukket plan kurve er

akvivalent med en generisk lukket plan kurve. (se [2]).

Ovelse. L,

[.2. Tegn generiske plane kurver som er isotope til ¢, for |n| > 1.

Definition 1.15. [ punL/ /) E f(1) kaldes et ydre punkt for [, hvis der findes en

linie [ gennem p, sa ln f(1 {p}. P Vele  dobhltpbt.,
Ovelse.
1.3. Bevis at en vilkarlig lukket plan kurve har vdre punkter. ebefverloadiaty s 6]

\

Lad nu g veere en generisk lukket plan kurve. Lad ty € I, sa ¢(ly) er et ydre punkt.
Definer sa en ny lukket plan kurve [ ved

F(t) = gt + to), for t € 10,1 — t],
= gt + 1o — 1), for t € [1 — o, 1].

QDvelse.
I.4. Vis at f ~ g¢.

Lad nu ty,.... ty, € I saledes at [(t;) = f(t3)..... f(ta—1) = f(ta,) er de simple
dobbelt-punkter for f og t,_y < ty for v = 1,..., n. Definer sa yu; € {+1}, 1 =
| DR n, ved at

D e ® hvis (f"(toi_1), f'(12:)) positiv basis,
Fe= 9 41 hvis (/'( O f

'(15;)) negativ basis.

RS pet.e
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Definer endvidere fortegn iy € {£1} horende til det ydre punkt pa folgende made:
Vektoren I?(i)(f'(())) udpeger en positiv side af linien [ gennem f(0) i retningen f7(0).
Vi lader pig = +1, hvis f(I) ligger pa den positive side af [, ellers er py = —1.

Saetning 1.16 (Whitney). Vi har folgende formel

d(f) = Z i

1=0

Eksempel.

[.8. Betragt den generiske lukkede plane kurve ¢;. Vi ser, at ¢; ikke har nogen
dobbelt-punkter. Idet ¢ (0) = (0,1) er H(%)(("l(())) = (—1,0), sa ¢/(I) er pa den
positive side af linien gennem ¢ (0) = (1,0) i retningen ¢} (0) = (0,1). Derved folger
at d(c;) = 1. Pa samme made kan vi udregne graden al c_; til d(c_;) = —1. Det
svarer jo fint til vores tidligere udregninger

1

1.9. Betragt nu den generiske lukkede plane kurve ¢y, Det ses let at co(L) er et

1

ydre punkt for ¢g. Vi har at «'{,(%) = (0, —4m), sa l{(ll)((")(ll)) = (4m,0); altsa ligger
co(1) pa den negative side og iy = —1. Der er ét dobbelt-punkt for ¢y nemlig
('U(%) = co(1). Idet (¢j(L),ch(1)) = ((=2m,47), (27, 47)), sa er p; = +1. Dermed

2
bliver d(¢y) = —1 4+ 1 = 0, som stemmer med udregningen i 1.7.

Ovelse.
[.5. Tegn nogle generiske lukkede plane kurver og brug Whitney’s formel til at
beregne graderne af de tegnede kurver. Kan du bevise Whitney’s formel?

Whitney’s saetning har dog langt fra lukket studiet af isotopier af plane kurver.
For de nyeste ndviklinger i studiet af isotopier af plane kurver se [1].
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Et kriterium for positiv definithed af matricer

Vi husker pa, at en reel symmetrisk kvadratisk matrix A kaldes positiv definit, hvis den
kvadratiske form x'Ax er positiv for alle x, der er forskellig fra 0. Tilsvarende kaldes en reel
symmetrisk kvadratisk matrix positiv semidefinit, hvis der gelder, at x'Ax > 0 for alle x.

Vi har, at x'Ax = 5% ajjx;xj. Desuden husker vi pa spektralsetningen for symmetriske
matricer, der siger, at A er ortogonalt @kvivalent med diagonalmatricen B bestaende-
af A’s egenveardier: A = U'BU, hvor U er en ortogonal matrix. Heraf far vi, at for
determinanter gelder : det(A) = det(U')det(B)det(U) = det(U'U)det(B) = det(B). Desuden
far vi med x = Uly, sd er x'Ax = y'Dy = © \;y;%, hvor \—erne er egenvardierne for
A. Ved at velge y-erne passende, ser man at A er positiv definit, hvis og kun hvis alle
A—erne er positive. Pa tilsvarende made ser man, at A er positiv semidefinit hvis og kun
hvis alle egenverdierne er ikke-negative.

Som bekendt er egenvaerdierne rgdderne i det karakteristiske polynomium for A. For at
finde dem skal man altsa faktorisere et nte grads polynomium. Det kan vere svert. Derfor er
det undertiden en hjelp, at man kan ngjes med at undersgge fortegn for nogle determinanter.

Lad Dy vere den kte ledende underdeterminant for A:

l.l“ o 43

(11 %12 0 Y1k

D. = (%2 . % - 9%
k ; : :

Qpp Qg - Opy

Satning 1

Lad A vere en reel symmetrisk nxn-matrix. Sa er A positiv definit hvis og kun hvis
Dy > 0 og agx > O for alle k = 1, 2,...,,n.

Bevis

Antag forst, at A er positiv definit. Lader vi Ax vaere den ledende kxk-matrix i A,
sa er for X = (X1,....Xk, 0,...,0) 0g ¥ = (X1,...,Xk):

x'Ax = y'Ayy
og derfor er Ay positiv definit. Alle Axs egenvardier er derfor positive. Da determinanten
Dy af Ak er produktet af egenvardierne for Ax , og disse alle er positive, er Dy positiv.
Et tilsvarende argument giver, at alle ay, er positive.

Det omvendte fglger af nedenstaende lemma 1 ved et induktionsbevis.



Lemma 1

Lad A veare en positiv definit symmetrisk nxn matrix.. Lad a > 0. Lad x vare en
n-vektor. Lad B vare (n+1)x(n+1) matricen:

A x
X a
Hvis determinanten af B er positiv, s er B positiv definit.

Bevis

For ethvert tal s mellem O og 1 defineres matricen By ved

Bs _ (At SX)
SX a

Sa er B; = B og By er positiv definit (hvilket man ser ved at regne pa den kvadratiske
form for By). Vi udregner determinanten af B ved at benytte, at determinanten er linear 1
hver sgjle, nir de andre sgjler holdes fast, - og tilsvarende for rekker.

i A sx+0 _ A sx) o (A 0
deL(Bs)—det<SX sa+(1—s)a> -det(sxt sa> Ed‘w<sxt (1—s)a>

A A X
=sdet (sxt a> + (1 —s)adet(A) =s det( )a) + (1 — s)adet(A)

\uA "| U SG

il
]

s(det( jﬁ x > +(1—- s)adet(A)\ + (1 — s)adet(A)
\ SX sa i

s2det(B) + s(1-s) a det(A) + (1-s) a det(A)

sdet(B) + (1-s?) a det(A) > 0
Lad |
W = {s € [0,1] : B er positiv semidefinit }

. Vi skal indse, at 1 tilngrer W. Vi indser nedenfor, at W er lukket. Lader vi da t vare
det starste element i W, sa er B positiv semidefinit. Da vi lige har set, at det(By) er positiv,
“kan ingen af egenverdierne i By vare 0, s By er positiv definit. Hvis ikke t = 1, kan vi
* vaelge en fglge s(n)—t og en fglge af vektorer X, med norm lig med 1, sa at Xp'Bsm)Xn <
0. Ved at udtynde x-erne kan vi antage at der findes et x, sa at x,— X og s(n)—t. Da
ses, at x'Bix < 0. Modstrid, da x ma have norm 1.

V1 mangler at vise, at W er lukket. Det er let Lad s(n) —s, hver s(n)erne ligger i W.
Lad x vare vilkarlig. Da er x'Bgpx = 0 og da denne talfglge konvergerer mod x 'Bsx, er
dette udtryk ikke-negativt for alle X, hvilket skulle vises. :



Korollar 1 —
Lad A vare en reel-symmetrisk kvadratisk ‘matrix. Sa gelder felgende:

A er negativ definit, dvs x'Ax < O for alle x forskellig fra 0, hvis og kun hvis al"le
ax < 0 og for alle k er (-1)XDy > 0.

Bevis

A er negativ definit hvis og kun hvis —A er positiv definit. Anvend sa s@tning 1 pa —A.

Der findes ogsa en karakterisering af positiv semidefinite matricer ved hjelp af
determinanter, men her ma man tage alle principale underdeterminanter i betragtning og ikke
kun de ledende. ( Der er naturligvis en tilsvarende karakterisering af negativ semidefinite

- matricer analog til korollar i, som lzseren selv ma formulere og bevise).

Fgrst indfgrer vi notationen A(i(1),i(2),...,i(k)) for den kxk matrix vi far ved at slette
alle andre rekker og sgijler i A end lige dem, der har numrene i(1),...,i(k). Lad ogsa
d(i(1),...,i(k)) vere determinanten af A(i(1),...,i(k)). Med den tidligere notation far vi
specielt, at Dy = d(1,2,...,k)

Saetning 2 -

Lad A veare en reel symmetrisk nxn matrix. Sa er A positiv semidefinit hvis og kun
hvis der for alle valg af i(1) < i(2) < ...< i(k) galder, at d(i(1),...,i(k)) = 0.

Bevis

Antag fgrst, at A er positiv semidefinit. Sa indses, at A(i(1),...,i(k)) er positiv semidefinit
analogt til beviset for s@tning 1, og den har derfor ikke negativ determinant.

Vi viser nu den anden vej ved induktion. Saztningen er klart rigtig for n = 1. Antag da,
-at-den’ gelder for alle (n-1)x(n-1) matricer-og lad A vare en nxn, matrix, der opfylder, at
alle de principale underdeterminanter er ikke-negative. Vi viser, at for alle € > 0 gelder, at
alle de ledende underdeterminanter- for A + €I, at disse er positive. . Af s@tning 1 fglger da,
at A + €l er positiv definit og dermed, at x'(A + e[)x.= x'Ax + ex'x > O for alle x forskellig
fra 0." Lader vi ¢ ga mod 0; far vi, at X'Ax > 0 for alle x.

Vi fuldfgrer nu induktionsbeviset. Sletter vi en sgjle og en rekke med samme nummer i
A, bliver den tilbagévaerende matrix positiv semidefinit ifglge induktionshypotesen. Adderer
vi él‘'med ¢ > Otil erf-positiv semidefinit matrix far vi en positiv definit matrix. Da apy
+ € > 0, mangler vi kun at vise, at det(A + €I) > 0 for at kunne bruge s@tning 1. Dette
sidste er der flere mader at se pa. Setter vi

f(t) = det(A + tI)

sa er f ifglge nedenstaende lemma 2 differentiabel med afledet
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f(t) = £," det(AD + tl1) > 0 for t > 0

hvor A® er A med sgjle og rekke nr i slettede. Fglgelig er f voksende for t > 0, sa f(e) >
f(0) > 0. Hermed er induktionsbeviset gennemfgrt.

Lemma 2

Lad f;(t).,...,fa(t) veere n vektorfunktioner af en reel variabel t, som er differentiable. Med
f;(t) betegnes vektorfunktionen bestaende af alle de afledede af koordinatfunktionerne for f;j.

Lad g(t) = det(f;(t),....fa(t)). Daer g differentiabel med afledet

g(t) = i det(f;(0),....£fi-1(0), 'O, fir1(Dyn(0)

Bevis

Skriv vj(h) = det(f;(t+h),...,fi(t+h), fir1(0),....T0 (1) for i =1,...,n og vo(h) = g(t). Daer
g(t + h) — g(t) = va(h) = Vp.1(h) + Va1 (h) = vaa(h) + ... +vi(h) = vo(h).

Resultatet fglger da ved at dividere med h pa begge sider og flytte 1/h ind pa den ite
faktor successivt ved at benytte, at determinanten er linezr i hver sgjle for sig, nar de
andre fastholdes, og endelig lade h ga mod 0.

Bemerkning

Matricen

0 0 O
0 0 1
0 1 0

opfylder at alle ledende determinanter er 0 og det er ogsa alle diagonalelementer, nitn
egenvardierne er 0, 1, —1, sa matricen er ikke positiv semidefinit. Man kan derfor godt opgive
at fa en karakterisering af positiv semidefinithed svarende til setning 1 i afsvaekket form.

Tage Bai Andersen, April 1995.



SUPPLERENDE NOTER OM DIFFERENTIABLE FLADER, N2
1 tilknytning til doC 2 - 2. Geometri [. JEA.
Inversfunktionssatningen.
Definition 2.1. Lad U C R" vere aben. En afbildning
F:U—R"

er af klasse C*(k = 1,2,...,00) hvis F har kontinuerte partielle afledede af alle
ordener < k (differentiabel betyder af klasse C™ ). For en sadan afbildning definerer
v for vilkarlig w € U den aflede af F

dF, :R" — R™

til at veere den linere afbildning qivet ved Jacobi matricen

1 \ n +
y 51 OF arac t+, )
) L 2y [ 9 )
dF, =y ... cee = |
! ! I, (“) Il (“) . |
WA dxq ’ e Dy, g MWus ¥ () /

Bemerk, at klasse C* indebarre klasse C* for 1 < 1 < k.

Lemma 2.2. Lad U C R" og V' C R™ vare aben og lad F : U — R™ 0og G :V — R
vare afbildninger af klasse C'* og antag of F(U) C V.
Sa er

GoF:U—TR
af klasse C*.
Bevis.
Resultatet for & = 1 er kendt fra Mat 11: Hvis F' har en afledet dF, i u € U og ¢
har en afledet dG, i v = F(u), sa har G o F' en afledet i u og
d(GoF), =dGpw)-dF,  (keedom -gemue

som skrevet med partielle aflede siger

0 = OG OF. L opua g
1 7o F); - —(u |
(1) 7. (Go Z 5. T 5 o g
fori=1,....n, j=1...logalleu €U. Heraf ser vijat hvis G og F er C'', sa er

G o F ogsa C'.

Lemmaet bevises nu ved induktion - induktionen "starter” ved & = 1 som vi lige har
set. Vi antager lemmaet geelder for afbildninger af klasse C*~! og skal sa vise at det
geelder for klasse C'*.

: : - . 0G,;
Lad F,G veere af klasse C*. Da er '()7'~ af klasse C*~!. Endvidere er é)y] o I som
X 1 gr
sammensetning af afbildninger af klasse C*~! ud fra induktionsantagelsen ogsa af

1
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klasse (!, s& hgjre side af (1) er af klasse C*~!, som sum af produkter af C*~L-
funktioner.
Sa venstre side af (1) er ogsa af klasse C’*~!. Men hvis forste-ordens afledede af en
afbildning er af klasse C*~!'| si er afbildningen af klasse C'*, og vi er fzerdige.
O
Vi skal bruge folgende lemma i beviset for inversfunktionssatning.

Lemma 2.3. Lad U vere en aben conveks delmangde af R* og f : U — R™ en
afbildning af klasse C''. For alle a € U kan vi skrive

(2) Jx) = fla)=®(x)(x —a) Ve €U. |} afk [ a

hvor ®(x) er en m x n matriz, sa indgangene i ®(x) er kontinuerte i x. Endvidere
geelder at ®(a) = df,.

Bemaerkning.

Omvendt ses det let at hvis f: U — R™ er vilkarlig ()g3 Opr lder (2) for en kontinuert
®, sa er f differentiabel i a og df, = ®(a). — it d g U ;
Bevis. Lo W

Lad a,x € U. Vi har da at ‘

—f(u+51—(/ Z()z (a + s(x —a))(x; — a;).

ds
=1

Hvis vi integrerer over s fra 0 til 1 fas

n

<1 of
flo)— fla) = Z (/ %(u, + s(ax — (L))([S) (r; — a;).
J0O L1

i=1

Lad sa ® vare defineret pa U saledes at ]0 )—f (a + s(x —a))ds er den 7’te sojle i
® (). Da er @ klart kontinuert i alle & € U og

flx) = fla) = ®(x)(x — a).
Af formlen for ® ses at ®(a) = df,.
(|

Seetning 2.4 (Inversfunktionssetning - C''). Lad U C R" veere dben og F : U — R”
en afbildning af klasse C''. Lad ug € U veere saledes at dF,, : R* — R" er en linewr

1somorfi.
Da findes der abne omegne W af ug ¢ U og V' af F(ug) + R" saledes at
1. F(W) =1V,

2. Flw : W =V er bijektiv og
3. (Flw) t:V =W er Cl. — (luglicil buy af at




Bevis.
Vi opdeler beviset i en rackke pastande.

Pastand.
Der findes en omegn W af ug i U sa F|y er injektiv.

) ((

Bevis. %
Lad D C U vere en aben kugle centreret i ug. Af middelvaerdisaetningen folger at
der for alle x,y € D findes z; pa liniestykket der forbinder x med y sa

Fi(x)— Fi(y) =dF;(z) - (x — y).

Dette kan samlet skrives

dF(z)
F(x)— F(y) = : (x—y).
dF,(z,)
Definer nu g : D x ... x D — R ved
dF) (wy)
g(wy, ..., w,) = det :
dF, (w,)
for (wy,...,w,) € D x ... x D. Idet g(ug,... ,uy) = det(dF,,) # 0, kan vi finde

W C D aben omegn af ug sa
glwy, ... w,) 0wy, ... ,w,) €W x - x W, [l
Da folger, at Fly : W — R" er injektiv.

Pastand.
For alle abne delmaengder W' C W, gwelder at F(W') er aben.

Bevis.

Lad xy € W og lad ' € W’ veere en lukket kugle med positiv radius og centrum i

ro. Lad sa 0 = dist(F(xg), F(OK)). Da F|y er injektiv har vi at F(xy) ¢ F(OK).

Men idet O er lukket og begraenset og funktionen |F(x) — F(xy)| er kontinuert i x,
/folger at 6 > 0. Vi viser nu at B(F (), 2) er indeholdt i F(K). Lad y € B(F(xy), g)

og betragt afbildningen ¢ : k' — R givéf ved
Lo o(z) = |F(z) — y|?, Vz € K.

[gen, idet A er lukket og begraenset, har ¢ et minimum, x € K. Vi ser at x ¢ IR
for lox > &, men p(xg) < &, Altsa x er i det indre af K. Da folger at dp, = 0.
Af formlen

(3) do, = 2dF,) (F(x) - y)
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ses at
Flz)—y=0
idet det(dF,) # 0. Altsa y € F'(I'). Formlen (3) bevises saledes
Iy
or, ) = a —4)°
0Fs
=) :
Z s
OF,
= 2 | or. (Fu() = ys)-

Lad nu V = F(W). Af de lige viste pastande er V aben og Fly : W — V er bijektiv.

Pastand.
Afbildningen (Fly)~': V — W er kontinuert.

Bevis.
Lad yyp € V ogset g = (Flw)~ 1/0) Lad € > 0 antag at € er sa lille at B(xg,¢) C W.
Af forrige pastand folger at F'|y (B(xg, €)) er aben. Da findes der 6 > 0 sa B(yy, ) C
F|W(B(.r0,€)). Men idet F|y er bijektiv folger det sa at (F|w) 'Y(B(yy,0)) C
B(xg,€). Viser derfor at

Ve>030>0:ly—yo|l <o6=|(Flw) " (y) = (FIW)  (yo)| <e.
Altsa (Fly) ™' : V — W er kontinuert.
Vi afslutter beviset for saeetningen ved at vise folgende pastand.
Pastand.
Afbildningen (Fy )" er af klassen €',

Bevis.
Lad @y € W og yy = F(xg). Af forrige lemma folger der findes ® sa
F(x)— F(rg) = ®(x)(x — xy) Vo € W

Idet ®(xy) = (IF,O og det(P(xg)) = det(dF,,) # 0, kan vi vaelge en omegn W' C W
af xg sa det®(xr) #0 Vo € W, .

Da ser vi at y=Fix

(Flw) "(y) = (Flw)  (yo) = ((Flw) " (¥) " (y — yo)-
Heraf folger sa at (F |w ~! har en afledet i yy og
([((FIW)VI).UU - ([F I?u Yyo)" - [*‘Hfr {“’\3(:‘{”3"‘\}"?

Derfor er d((Flw)™"),, er kontinuert i yy. Altsa er (Fly)~' er C'..
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O

Szetning 2.5 (Inversfunktionssetning - C*). Lad U C R" vere dben og F : U — R”
en afbildning af klasse C*. Lad uy € U vere sdledes at dF,, : R* — R" er en linear
1S0morfi.
Da findes der abne omegne W af ug i U og V' af F(uy) ¢ R* sdledes at

1. F(W) =1V,

2. Flw : W —V er bijektiv og

3. (Flw)™ ' :V =W erC*.

Bevis.
Tilfeeldet £ = 1 blev bevist ovenfor. Vi bruger induktion, som "starter” med dette
kendte resultat: Vi antager at C'*-saetningen geelder, og ma vise at C'*+'-satningen
gor.

Lad F vaere CFH sy dF,, en linexr isomorfi. Induktionsantagelsen forteeller, at
der findes W, V' som i saetningens ordlyd, altsa med F~!: V — W af klasse C*.

Vi har idet F o F~' =1y, at

g!e%-«w«\ 2.2 ((lF)[«ul(,,) O([(Ffl)[v = 1gn, & Yo hbksume e

altsa
, -1 =1
(4) d(F7")y = [(dF) p-1(y)]
for alle v € V.

Indgangene i matricen dF er C*-funktioner idet F er C**'. Da F~! er af klasse
C*, er indgangene i (dF);-1(,), pa formen

OF,

.—' o Fﬁ](”),
O.I'J'

som er C'*-funktioner i v.

Determinanten det(dF) p-1,) er af klasse C*, som sum af produkter af C*-funktioner.
Denne funktion er ikke nul for v € V' (for matricen er invertibel), sa 1/det(dF')p-1(,)
er ogsa en C'*-funktion. Men sa at indgangene i

=
[((IF)];'—I(,,)]
C*-funktioner af v, for disse er dannet ved summer af produkter af C*-funktionerne
COF; —1
det(dF) p-10,) 0g oo © F~(v).

Men sa giver (4) at leddene i d(F~1), er C*-funktioner af v; disse led er de forste-
ordens afledede af F=!' sa F'~! er af klasse C**! som onsket.

Od

Vi har altsa bevist folgende fundamentale saetning:
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Saetning 2.6 (Inversfunktionssaetning). Lad U C R™ vere dben og F : U — R* en

differentiabel afbildning. Lad uy € U vere sdaledes at dF,, : R* — R er en linear
1s0morfi.
Da findes der abne omegne W af ug i U og V' af F(ug) i R" sdiledes at

1. F(W) =1V,

2. Flw : W =V er bijektiv og

3. (Flw) 'V — W er differentiabel.
Definition 2.7 (Diffeomorfi). Lad W,V C R" vere dben og lad F - W — V vare
en afbildning. Huvis der gaelder

1. F: W —V er biyektiv

2. F: W — V er differentiabel og

3. F7': V. — W er differentiabel.

sa siges F'at vere en diffeomorfi fra W til V.

Bemeaerkning.
Inversfunktionssaetning siger altsa at F|y : W — V er en diffeomorfi.
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Regul=re flader.
For vi definerer en regulaer flade skal vi lige bruge nogle elementezre begreber
angaende kontinuitet og abne mangder.

Definition 2.8. Lad X wvere en vilkarlig delmengde af R™. Vi siger at en funktion
f: X = R™ er kontinuert 7 1y € X, hvis og kun huvis

(5) Ve>0,30>0: v —uxg| <d x€X=|f(x)— flag) <e.
Vi siger at f er kontinuert, hvis den er kontinuert i alle xq € X .

Bemezerkning
1. Vi observerer at (5) er equivalent med:

Ve > 0,30 >0: f(B(xg,0) N X) C B(f(xg),e),
hvor vi for p € R* og r > 0 definerer

Bp.r)={qeR||¢—p| < r}.

2. Hvis X er en vilkarlig delmeengde af R™. Y er en vilkarlig delmeengde af R* og
X — Y er en atbildning, sa siger vi at f er kontinuert, hvis den er kontinuert nar
. g .
den betragtes som afbildning fra X til R".

3. Lad U veere en aben delmeaengde af R". Hvis F': U — R™ er en kontinuert funktion
og X er en vilkarlig delmaengde af R, da er det klart at Flyqy : X NU — R™ er
kontinuert.

Definition 2.9 (Homeomorfi). Lad X vare en vilkarlig delmaengde af R™, Y er en
vilkarlig delmeangde af R* og f: X — Y er en afbildning. Da er f en homeomorfi
hws og kun huvis

L. f: W =V er bijektiv

2. [ W =V er kontinuert og

3. [TV V = W er kontinuert.

Lemma 2.10. Lad X vere en vilkarlig delmangde af R™ og lad Y vere en vilkirlig
delmengde af R". Lad f: X —Y o9 g:Y — RF vere kontinuerte afbildninger. Da
ergo f: X — RF Lontinuert.

Bemeaerkning.

At dette lemma folger det at sammensatningen af to homeomorfier er igen en home-
omorfi.

Ovelse. 2.1

Bevis dette lemma.
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Definition 2.11. Lad X vere en vilkarlig delmangde af R™. En delmaengde W C X
kaldes aben 1 X, hwvis der for alle p € W findes en aben omegn V' i R™ af p sdaledes
VnXcw.

Ovelse. 2.2
Lad X veere en vilkarlig delmeengde af R". Bevis folgende 3 pastande for abne
meengder 1 X.

1. Meengderne () og X er abne i X.

2. Hvis Uy, ... .U, er endeligt mange abne delmaengder i X, sa er N, U; aben i X.
3. Hvis Uj, j € J er en familie af abne delmeengder i X, sa er U, U; aben i X.

Dette betyder at de abne maengder i X danner hvad man kalder en topologi pa X .

Ovelse. 2.3

Betragt det specielle tilfaelde hvor X er en aben delmaengde af R™. Bevis i det tilfaelde
at W C X er aben 1 X hvis og kun hvis W er aben. Giv eksempler pa delmaengder
af R™ hvor dette ikke er tilfaeldet.

Som naevnt pa ugeseddel # 4, vil vi bruge folgende definition af en reguler flade:
g g g

Definition 2.12 (Regulaer flade). En delmangde S C R® er en reguler flade huvis
der for allep € S, findes en omegn Vi R® af p og en bijektiv afbildning x : U — VNS,
hvor U C R? er aben. saledes at

1. Afbildningen x er differentiabel.

2. Afbildningen x er en homeomorfi. D.ov.s. x: U — VNS ogx':VNS —=U
er kontinuerte.

3. (Regularitets betingelsen.) For alle w € U er differentialet dx, : R* — R?
ingektivt.

Funktionen x kaldes en parametrisering, et lokalt koordinatssystem eller et kort for
en omegn af p eller naer p.

Bemark definition 2.11 fortaeller os hvad det betyder at en delmaengde W af en
reguleer flade S er aben i S.

Proposition 2.13. Lad S vere en requler flade og W en delmaengde af S. Da er
W dben i S hvis og kun hvis der for alle kort x : U — S ga@lder at x (W) er en
aben delmangde af U.

Bevis.

Antag at W er aben i S. Lad ¢ € x (W), og lad p = x(¢). Da findes der ¢ > 0 sa
B(p,e) NS C W per definition. Men idet x : U — S er kontinuert findes der 6 > 0
sa x(B(q.0)) C B(p,e)n S C W, altsa B(q,0) C x '(W). Derfor er x (W) aben.
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Antag nu omvendt at W C S er saledes at x ' (W) er aben for alle kort x : U — S.
Lad p € W og lad V vare en aben omegn i R® af p, saledes der findes et kort
x:U—=VnS. Lad sa ¢ = x'(p). Idet x (W) er aben, folger der findes ¢ > 0 sa
B(q,e) C x Y (W). Dax~': VNS — U er kontinuert. findes der & > 0 sa B(p,o)CcV
0g

x '(B(p,6)NS) C B(q,e) C x " (W).
Idet x ' : V' NS — U er bijektiv folger at
B(p,o)nS cW.
Altsa er W aben i S.
O

Pa grundlaget af definitionerne, lemmaerne, propositionerne og saetningerne i denne
note er alle beviserne i afsnit 2~ 21 do Carmo nu ok (ogsa beviset for Proposition 4.
side 64)!






