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Kompleks Funktionsteori

Ugeseddel nr. 12

Foreleesningerne den 4. og 6. december omhandler folger og reekker af analytiske
funktioner. Der benyttes Ahlfors: "Complex analysis" side 136-139.
Opgaver til ovelserne i ugen 10. - 14. december:

Eksamen vinteren 1999-2000, opgave 3

Eksamen sommeren 2001, opgave 4
Ahlfors, side 139 opgave 1,2 og 3

Afleveringsopgave til ugen 10. - 14. december:

Eksamen vinteren 1999-2000, opgave 1

Med venlig hilsen

Erik Balslev
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Kompleks Funktionsteori

Ugeseddel nr. 11

Forelaesningerne den 27. og 29. november omhandler gammafunktionen. De
fremlagte noter af Gorm Kittelmann benyttes.

Opgaver til ovelserne i ugen 3. - 7. december:

PS opg. 88, 1-3 (Rettelse i 1. linie: z+1)
Eksamen som. 2001 opg. 1
Eksamen som. 2001 opg. 4
Eksamen som. 2000 opg. 4

Afleveringsopgave til ugen 3. - 7. december:

Eksamen som. 2001 opg. 3

Med venlig hilsen

Erik Balslev
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GAMMAFUNKTIONEN OG RIEMANNS ZETAFUNKTION 3

2. GAMMAFUNKTIONEN

Historisk set blev Gammafunktionen fgrste gang (1729) [W.& W.] defineret af Euler,
som det uendeligeprodukt:

re) = [[{0+2) a+3)7) (2.1)

n=1

Vi vil senere se at dette produkt er analytisk pa C\Np med simple poler i z =
1 [
og at denne definition er a&kvivalent med Weierstrass’s kanoniske form:

00

p(lz) =zel” H {(1 + %) e%} (2.2)

ne=l

(7 er Eulers konstant). _
Jeg tager udgangspunktet i Gammafunktionen defineret som integral:

I'(s) = / et 'dt Res>0 (2.3)
0
(¢* hvor s er kompleks ses defineret i def. B.21).

I afsnit 2.2 vil vi udvide denne definition og i afsnit 2.3 vises at (2.1), (2.2) og
(2.3)(med udvidelse) er akvivalente.

2.1. Gammafunktionen som integral.

Definition 2.1. Gammafunktionen og Betafunktionen er defineret ved:
Fis) = / ett*'dt Res>0 (2.4)
0
' 1
B(u,v) = / t“T(1—-t)"'dt Reu>0 Rev >0 (2.5)

Saetning 2.2. ['(s) og B(u,v) er veldefineret og analytisk pd C* = {z € (Cl Rez > 0}.

Bevis. Vi ser forst pd gammafunktionen. Det fgrste vi skal vise er at integralet ek-
sisterer, dvs [° |e~*t*~!| dt < oo

Lad s € Ct Da eksisterer der A€ Rsd 0<d <Res< A

Ieft ts—ll — |e~t| X |e(s—1) lntl

(Res—1) Int —t tR.es—l

=ete

<{t51 0<t<1

=€

e ttd-l ¢t>1
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/ltd"ldt—[lt5]1~l<oo
o Tt TS

o0
/ e ttA 1 dt < 0
1 .

Sidste integral ses ved at anvende partiel integration et passende antal gange og
bemaerke at f1°° e"ttedt < floo e tdt < oo for a < 0. Vi kan nu vurdere det gnskede

integral:
1/ ettt dt| < / le~t 71| dt < oo
0 0

For at vise at ['(s) er analytisk lader vi C veere en lukket kurve i den positive
komplekse halvplan C*:

/F(s)dsz// e_tts_ldtds:/ /e“tts_ldsdtz/ 0dt=0
c cJo o Je 0

Hvilket fas fra Cauchy’s saetning da e *¢t*~! som funktion af s er analytisk. Ombyt-
ning af integralerne fas fra-Fubinis seetning.

Da I'(s) er kontinuert (integialet eksisterer) og for alle lukkede kurver i C* er
JoT(s) = 0 har vi fra Morera’s satning at I'(s) er analytisk i C*.

Pa samme made kan vi vise at B(u, 9} er veldefineret og analytisk, med falgende

vurdering for Reu > > 0 Rev > §:
N

et (1 - <t a -1t Viee (0,1)

2.1.1. Sammenheng mellem Gamma og Beta-funktionen.

Seetning 2.3.
B(u,v) T(u+v) =T(u)T'(v) u,veCt (2.6)

Bewvis. Vi udregner fglgende integral pa to mader:

I(u,v) _ / / e~ (&%) g2u=120-1 g g

— / 22uldx/ey 2vldy
J0 0

= I(u)I(v)

Selv om vores integral ikke er reelt er Substitution tilladt, da vi substituere med en

“reel variabel, se evt. bemaerkning (B.22). Sub. t = z? %= /i b — L

dt 2Vt

[ u-1 1 1/00 —t g1 1
- — i = lt = — tu — ‘F [
I(u) > /O et (V1) ﬂ( 2 /. e dt - (u)
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GAMMAFUNKTIONEN OG RIEMANNS ZETAFUNKTION

Dvs.

T, ) = %F(u)l"(v)

Herefter udregnes I(u,v) i polaere koordinater:

t=rcos® y=rsinl r*=z*+y?> dxdy=rdrdd

I('u,, 'U) = / e—’r2 r2'u—1+2’u—l TdT/2 (Cos 9)2u-1(sin 9)21)-—1 do
0 0

Sub. ¢t = r? r=+/1 %:2%/{

1 [ 2
I(u,v) = 5/{; et t“+”‘1dt/2(c030)2““1(sin )2~ df
0

= %F(u + ) /2 (cos 0)**~(sin 0)*>"~! dO
0

1 1
= Q—F(u +v) /2 (cos® §)*2 (1 — cos? 9)"_% do
0

Sub. t = cos®0 (Bemaerk at t er strengt monoton og diff. pa [0, 5]

do -1
0 = ArccosV/t _—=
¢ dt ~ I-2vt
Hu,w) = lI‘(u~}-v) /ot“‘% (1 t)""% 1 dt
’ 2 . I —t2:/F
1
= 11“(u + v)/ (1 —t)v T dt
4 0
1
= 0 (u+v)B(u,v)
Det ses nu at
[(u) T'(v) = I'(u + v) B(u,v)
2.1.2. Funktionalligninger.
Szetning 2.4. Funktionalligninger for gammafunktionen.
[(s+1) = sI[(s) Res >0
™
T(s)T(1 - =
(s)T(1—s) Sin(r ) O,< Res <1

Beuvis. for 2.7

(2.7)
(2.8)
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Med (2.6) har vi

X .
B(s,1) = /ts‘l(l—t)l“ldt
0

1
= / L dt
0

1 1
— ___tS i — =
[S ]0 s

Se evt. (B.1)

= [(s+1)=sI(s)

Til at bevise 2.8 anvendes fglgende lemma:

Lemma 2.5.

B(s,1 —s) = u 0<Res<1
sin(ms)
Beuwis.
B(s,1— s) /lt““l(l t)~ dt /1( ' ) L
S,1—S8)= =
| ; M
Substituerer
—k = z(l-t)=t =
T z =
T
=t(1 =
z=t(l+z) = s
d 1
dz (14 )2
. =1+
-t i-gm
Vi far

B e (l4n) g e
1_ — R ) - =
(s, s) /o 7 (1+x) e T /0 e x

For at evaluere B(s,1 — s) anvendes residue satningen.

f(2)

Zsél

:1+z_

2 € G = C\{R* U{0}}

Vi gnsker at f(z) er kontinuert pd Cy\{z =-} og lader derfor

2¢ = etllnlzl+iargz) 0 <argz < 2w
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Vi integrerer- f langs kurven C| se fig.1

%

FIGUR 1. kurven C omkring z=-1

s—1

= — i —(— - — N s—1
Res(f,~1) = lim, ( — (-1)) £-— = lim, 2
- 6(8_1) (In14im) _ e(‘?—l)iw — _eiws

Se [S.T.]. Af residue s@tningen fas:

/ f(2) dz = 27iRes(f, —1) = —2mi '™
(o)

(2.10)

(2.11)

fcf er uafhaengigt af R og r. Vi lader nu 7 — 0 og R — oo og ser at vi kun far

bidrag fra integralet langs C; og C,.
Integralet langs den inderste kurve:

f—0 for r—0

|z|=r

Bevis. Lad z =re** ¢ € [0, 2n] s=u+iw uw,veRogl<u<l

Zs—l — (,,. ei¢)u—1+iv — e(u—1+iv) (InT+i¢)
. — e(u~1) Inr—v¢ ei(v Inr+(u—1)9)
lzs—ll — e(u—l) Inr—v¢
< e(u—l) Inr e|v| 2r

el 627r |v|

lz+1]>1—z|=1—-r>0 for r<1

s—1 u—1

dzl < orpe2mll T
|z|:rz+1 |_ mre 1—r

u

= konst.

-0 r—0
—r
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dau>0

Integralet langs den yderste kurve:
/ f—0 for R— oo
|z|]=R

Bevis. Viharnu |z+1| > R—1 for R > 1, ellers kan vi blot i ovenstiende udregninge
erstatte r med R og far:

s—1
/ z dz
jol=r 7 + 1

dau<l1

u

< konst. 71 < konst. R* ' -0 for R — oo

Vi vil nu se pd graenseverdierne for integralet langs C, og C,. For et bestem!
punkt z = roe* pa C) vil ¢ — 0 og 7y — z nar r — 0, se figur 2. Derfo
vil lim, 0 2§ = gsInz+i0) — g5 Pga. vores kontinuerte valg for 2° far vi ikke det
samme i det tilsvarende punkt pa C,. Da vil ¢ — 27 ry — z nar r — 0 hvorfor
lim,_,o st' — es(lnz+i27r) = % ei2ms

F1GUR 2. Punktet z, pa C) i greensen r — 0

Rr:;o 00 IIIS—1 '
f(z) °>°/ dr = B(s,1 — s)
C 0 1 +zT .

r—0 00 ,.5—1 _i2ms o ns—1
R T € : T 2T s
f(Z) i))o_ _“2(]3;: _6127rs dr = _6127rb B(S,I“S)

Co
Dvs.
lim [ f=B(s,1-s)(1—e?"™)

r—0
R—o0 ¥ C
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Af (2.11) fas:

B(s,1—s)(1—¢®™) = —2mie™ &
1 ei27rs_1 -1 B l ins _ _—ims ]‘1 _ ™
B(571 - S) = W[Z eiws :l =7 [21 (6 € ) Sin(ﬂs)
|
Beuvis. for 2.8. Af (2.6) og lemma (2.5) fés: i
[(s)T(1 —s) = B(s,1 —s)T(s +1-5)=B(s,1-35) = sin(ms)
O
2.2. Udvidelse af Gammafunktionen.
Proposition 2.7.
" I'(s+n+1)
I'(s) = VneN Res>0 1
(s) s(s+1)---(s+n—1)(s+n) e €s (2
Beuvis. Lad n € N vare givet:
P(s+n+1) = (s+n)I(s+n)=(s+n)(s+n— I(s+n—-1)
o= (s+n)---(s+1)sT(s)
(]

Ud fra proportion (2.7) kan I'(s) udvides til C_y, = C\{ —NU{0}} efter fplgende
opskrift: lad s € C veere givet. Find et n € N si Res > —(n + 1) & n> —(1+Res).
Da er I'(s) givet ved (2.12)

['(s) stemmeoverens med den tidligere definition pd C* og er iflg. proposition 2.7
analytisk pa C_y,.

2.2.1. Nulpunkter og poler.

Proposition 2.8.
['(s) har simple poler i s =0,—1,—2,--- med Res (L, —n)=(-1)"L n e N

Bevis. Lad n € N: i
lim [(s — (—n)) -F(s)] = lim [(s +n) 5

L(s+n+1) ]
)

s——n s——n 3+1) ---(3+n
L (1)
- —n(-n+1)--- (-1)
L (_1)"% {20

Da Grzenseverdien eksisterer og ikke er nul har vi det gnskede, se [S.T.] lemma 11.4
og 12.2.

M
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Proposition 2.10.
Udvidelse af funktionalligning: (2.8)

L(s)T(1-3s) = Vs € C\Z (2.14)

sin(7s)
Beuvis. T'(s)T'(1 —s) og sin(rs) ©F begge analytiske funktioner paA C\Z som klart er en
dbenmaengde. Da funktionerne stemmer overens pa {z € Z’O < Res < 1} har vi fra
identitetssatningen [S.T.] 5.187 det gnskede.

O

Seetning 2.11. I'(s) har ingen nulpunkter.

Bevis. Vived I'(n +1) = n! # 0 for n € Ny. Vi mangler nu C\Z. For at opna en
modstrid antager vi at der eksisterer s € C\N s& ['(s) =0 .

I'(s) # 0 i en udprikket &ben omegn omkring s, (ellers ville T' = 0 overalt), og her
har vi

1 s

RS ['(s) sin(rs)

Vi kan derfor tage greensevaerdien:

lim |T'(1 — s)| = lim !

™ I_‘ 7r 1
) s—=s0 1 T'(s) sin(ms)|  Isin(ms)

_*l:oo

I'(s)

m
S—So

Da I'(1 — s) er analytisk i s, har vi en modstrid.

O

2.2.3. Funktionalligningerne med udvidelse.

P& samme made som vi udvidede gyldigheden af (2.8), kan vi udvide de gvri~e

funktionalligninger:
[(s+1) =sI(s) seC\ - Ny

[(s)T(1 - s) = ;;(%—S-) s€C\Z

(2.20)
(2.21)
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Morten Skarsholm Risager e A.5.25 e risager@imf.au.dk 23. november 2001

Afsnittet nederst side 132 1 P.S om Mobiustransformationen

@(z)zz_%, zeC

zZ+1

er en smule dunkelt. Vi vil forsege at ga lidt grundigere til veerks. Start med at genlaese
S&T opg. 2.7 (US 1) for definitionen af sammenhsengskomponenter og egenskaber ved
disse. Lad ~

D = {z € C*||z| < 1}, D ={z € C|z| > 1}

H={zeCIm(z) >0}, H={z€eCIm(z)<0}

C ={z€e (|7 =1}.

Det er en god idé at sidde med en tegning af disse omrader nar bevises gennemlaeses.
Lav D, D og C pa én kopi af C og de andre pa en anden.

Pastand 1. Mdobiustransformationen ® afbilder R U {oo} (surjektivt) pa C, dvs
P(RU {o0}) =C.

Bevis. Da ® er cirkeltro (Sezetning 24.3) er ®(R U {oo}) en cirkel eller en linie. Vi be-

maerker at
®0) = -1
®(1) = —i
P(c0) = 1

Disse tre punkter ligger alle pa C. Da tre forskellige punkter entydigt bestemmer en
cirkel eller en linie er

B(RU {oo}) = C.
O

Pastand 2. Mengden C*\(RU{oo}) splitter op i sammenhangskomponenter pa folgende
made

C\(RU{oc})=HUH.

Bevis. Husk at sammenhaengskomponenten indeholdende z, er mengden af de z €
C*\(R U {o0}) hvor der eksisterer en kontinuert kurve v : [a,0] — C*\(R U {oo}) sa
v(a) = z og v(b) = 2. Detaljerne overlades til laeseren. O

Pastand 3. Mangden C*\C splitter op i sammenhangskomponenter pa folgende made
C\C =DUD.



Bevis. Overlades til leeseren. O

Pastand 4. Lad A vere en sammenhaengende delmengde af C og lad f: A — C vere
kontinuert. Sa er f(A) sammenhaengende.

Bevis. Lad f(z1), f(22) € f(A), hvor 21,20 € A. Da A er sammenhangende findes der
en kontinuert kurve v : [a,b] — A sa y(a) = z; og v(b) = 2. Betragt nu I'(t) = f(v(t))
for t € [a,b]. Sd er T': [a,b] — f(A) kontinuert og I'(a) = f(21) og I'(b) = f(z2). Dermed
er f(A) sammenhangende ifplge definitionen. O

Bemark at pastand 2 og 4 tilsammen viser at bade ®(H) og ®(H) er sammenhaen-
gende idet en sammenheengskomponent ifolge opgave 2.7 i S&T er sammenhzangende.

Pastand 5. Mdbiustransformationen ® afbilder H ind © D og H ind i D, dus.
®(H)c D, ®(H)cC D.

Bevis. Bemzrk at i € H og —i € HDa ®(i) =0 € D og ®(—i) =oo € Der ®(H) C D
og ®(H) c D. Antag nemlig at der findes et 2 € H sa ®(z) ¢ D. Da ® er injektiv kan
®(2) ifolge pastand 1 ikke ligge pa RU{oo}. Dermed ma ®(z) € D. Ifolge bemaerkningen
umiddelbart efter pastand 4 er der en kontinuert kurve mellem ®(i) = 0 og ®(z) € D.
Men dette er i modstrid med pastand 2. Altsa er &(H) C D. Tilsvarende med den anden
maengdeinklusion. O

Pastand 6. Mobiustransformationen ® afbilder H surjektivt pa D og H surjektivt pa
D dvs.

®(H)=D, ®H)=D.

Bevis. Tfolge pastand 5 er ®(H) € D og ®(H) C D. Antag modstridsvist at der eksis-
terer et z € D sa z € ®(H). Der ® er en bijektion fra C* til C* eksister der et w € C* sa
®(w) = 2. Ifplge antagelsen er w ¢ H. Dvs. w € RU{oo} eller w € H. Hvis w € RU{o0}
er z = ®(w) € C ifplge pastand 1 og hvis w € Her z = ®(w) € D ifplge pastand 5.
Begge dele giver modstrid med 2z € D. Altsa er antagelsen forkert og ®(H) = D. Den
anden lighed vises pa tilsvarende made. O

Proposition 1. Afbildningen ®|y : H — D er en isomorfi mellem den gvre haluplan og
enhedscirkelskiven.

Bevis. Afbildningen ®|y er surjektiv pa D ifolge pastand 6. Den er injektiv idet ® er
injektiv og den er differentiabel da den er sammensat af differentiable funktioner og
—i ¢ H. Bemark at den inverse Mobiustransformation giver en differentiabel afbildning
den anden vej. O

Morten Skarsholm Risager
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Ugeseddel nr. 10

Vi har afsluttet gennemgangen af homografier efter PS.

Vi fortseetter efter S-T med kap. 13.4, potentialteori, og derefter kap. 14, analytisk
fortseettelse.

Opgaver til ovelserne i ugen 26. - 30. november:

PS opg. 98, 1. 1-5
opg. 99

Eksamensopgaver
vin. 2000-2001 opg. 1
vin. 2000-2001 opg. 2
som. 2001 opg. 2

Afleveringsopgave til ugen 26. - 30. november:

vin. 2000-2001 opg. 3

Med venlig hilsen

Erik Balslev
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Kompleks Funktionsteori

Ugeseddel nr. 9

Ved foreleesningerne 13/11 beviser vi, at homografien z%i svarer til en

<

drejning pa 180° om ¢ -aksen pa Riemann-<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>