Vi har udledt (3) ret omhyggeligt. Mere gvede i kompleks in-
tegrationsteknik ville have omskrevet (3) straks ved at integrere
f(2) langs den pé figuren til venstre viste vej.

Af (3) fplger

— ————— = 2mie —Ii(r ,
“) , ¢ . %1+ ) ! !
hvor

2w ipeit‘. '

I = . — dt, 0 > 0, 1.

1(p) /0 o et (1§ peit) p>0,p#
Af vurderingen

p
Lp|<2r———, p>0, p#1,
| | l(p)l pa|1__p|

fremgar, at

Ii(r) = 0 forr — +o0 (daa>0),
Ii(e) > 0fore =0 (da < 1).

Lader vi altsd i (4) r — 400 oge — 0, ser vi for det fgrste, at det uegentlige integral I er
konvergent (hvad vi nu godt vidste i forvejen), og for det andet, at

L d : .
J = / __j____ = 2 e—zmr(l _ e—za21r)—1 = m )
o z(l41z) sin am

16 Argumentprincippet. Abenhed af en holomorf atbildning.

Betragt en lukket vej v med den egenskab, at Ind(y; z) er enten O eller 1 for alle z € C\ v*. Der
gelder altsd

C=+"UlUY,
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hvor

I'={z€C—v*|Ind(y;2) = 1},
Y ={z € C—v* | Ind(y; 2) = 0}.

Vivilkalde / og ¥ for henholdsvis det indre og det ydre for y og vil tale om, at et punkt a ligger
pd 7y, inden for v eller uden for v, alt efter soma € v*, a € I ellera € Y.

Forlgber +y i et omréde €2, er v dbenbart homolog med 0 i 2 nar og kun ndr det indre for vy er
indeholdt i £2.

Nedenfor er angivet simple eksempler p8 lukkede veje, der har den ovenfor omtalte egenskab.

Seetning 16.1 (Argumentprincippet). :

Lad 2 veere et omrade og lad y: [a, B] — § veere en lukket vej i 2, sdledes at Ind(v; z) er enten
0 eller 1 for alle z € C\ v* og sdledes at det indre for -y er indeholdt i Q.

Lad f veere meromorf i Q og uden nulpunkter eller poler pa v*.

LadT': [, B] = C\ {0} veere den lukkede vej defineret ved T'(t) = f(v(t)), a < t < £.

il

L4

Da geelder

0 Ind(T; 0) = 2% / ’;’((Z)) dz=N-P,

hvor N og P er henholdsvis antallet af nulpunkter og antallet af poler for f inden for . Hvert
enkelt nulpunkt og pol skal telles sé ofte, som ordenen angiver.
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Kommentar: y* forenet med det indre for ’y er en kompakt delmangde af 2. Der er derfor hgjst
endeligt mange nulpunkter og poler for f inden for 7.

Bevis: F(zsrste halvdel af (1) er umiddelbar:

Imd(T30) = 5 / = % ﬂF’((:)) dt
_ 1 f’(v(t))“r (t) f'(z) ,
27rz f(v(®)) ab 2mi [r f(z)

Anden halvdel af (1) vises ved at anvende Residuestningen pé integralet - f f'(2)/ f(2)d=.
Funktionen f’/f er holomorf i © \ (N U P¥), hvor Ny og Py betegner henholdsvxs nulpunkts-
mangden og polmangden for f. I et punkta € Ny U Ps har f'/f en isoleret singularitet, som vi
vil vise er en simpel pol.

a er altsd et nulpunkt eller en pol for f. Vi betegner ordenen med ord(a) og stter £ = ord(a),
hvisa € Ny og k = —ord(a), hvisa € P;.

Der findes en 8ben cirkelskive D(a; p) € €, séledes at

) F(2) = (z — a)*g(2) z € D'(a; p),
hvor g er holomorf og uden nulpunkter i D'(a; p).
Af (2) fplger

) kg
) " z=a g(x)

hvoraf fremgar, at a er en simpel pol for f, og at

Res (f’ ) _Jord(a)  hvisa € Ny,
f’ —ord(a) hvisa € Py.

z € D'(a; p),

95



Ifplge Residuesetningen har vi

1 fI(Z) = : . -
2—7”/7 2) dz = g,;f ord(a) Ind(y; a) — Z ord(a) Ind(y;a) = N — P.

ﬂEPf

Seetning 16.2 (Rouchés Seetning).

Lad () veere et omride og lad y: |a, ] — Q veere en lukket vej i §2, sdledes at Ind(vy; 2) er enten
0 eller 1 for alle z € C — v* og sdledes at det indre for vy er indeholdt i ).

Lad f og g veere holomorfe i ) og lad

©) 1f(2) =92 <|f(2)|  forallez €.

Sd har [ og g det samme (endelige) antal nulpunkter inden for . Hvert enkelt nulpunkt skal
teelles sa ofte, som ordenen angiver.

Bevis: Betragt de lukkede veje I'y og I'y definerede ved

) =70@), a<t<p,
L) =9(v(®), a<t<p.

Af (3) ses, at
I1(t) = La())] <ITu(t)]  fora <t < B,
hvilket, ifplge Seetning 4.7, side 29 medfgrer
Ind(T'1;0) = Ind(Ty; 0).

Rouchés Setning fglger nu umiddelbart af Argumentprincippet. O

Lad os som eksempel pd en anvendelse af Rouchés Setning bevise Algebraens Fundamentalszt-
ning nok en gang. Vi betragter et polynomium af gradn > 1:

P(z)=apy+a1z+ - +a, 12" 1 + 2"

Hvis R > 1 0g B > |ag| + |as]| + - - - + |a,_y |, geelder der
|P(2) — 2| < || for |z| = R.
Af Rouchés Swtning folger, at P(2) har pracis n nulpunkter inden for cirklen |z| = R.
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Setning 16.3 Lad f veere holomorf, men ikke konstant i et omrdde Q). Lad z.€ Q og wy = f(2p).
Ladk > 1 veere bestemt ved f'(z) = ... = fE~V(2) = 0, f®)(2) #£ 0.

Der findes da dbne cirkelskiver D(zo;r) S Q og D(wo; p), sdledes at der for ethvert w €
D(wq; p) geelder, at f(z) — w har preecis k nulpunkter i D(zp; 7). Hvis w € D'(wy; p), er disse
k nulpunkter simple og derfor forskellige.

Cirkelskiven D(wo; p) er altsd indeholdt i billedmengden (). Mere udfgrligt: Ethvert w €
D'(wo; p) er billede ved f af pracis k forskellige punkter i D'(zo; 7); wo er billede ved f af 2y og
ikke billede af noget andet punkt i D(2p; r).

Satning 16.3 vil blive skerpet i neeste paragraf. (Setning 17.1 og Sztning 17.3).
Bevis: Der findes en lukket cirkelskive D(z;7) C €, siledes at

6 f(2) # wp for alle z € D(z2g;7) \ {20};
(i) f'(z) #0 for alle z € D'(29;7).

Overvej dette. Lad vy veere cirklen |2 — 20| = r med positivt omlgb og lad ' vare billedet ved f
af v. Ifglge (i) har vi wo ¢ I'*, og der findes derfor en 8ben cirkelskive D(wy; p) C C \ T'*.

D(z,:r)

(k=3)
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Lad w € D(wy; p). [fplge Argumentprincippet og Seetning 4.8, side 29 har vi
(Antal nulpunkter for f(z) — w indenfor 7)) =
Ind(I'; w) = Ind(T; wy) =
(Antal nulpunkter for f(z) — w, indenfor y) =

idet zg er et k-dobbelt nulpunkt for f(z) — wy og f (2) — wy ikke har andre nulpunkter inden for
v ifglge (i).

Hvis w € D'(wy; p) oga € D(zo;7) er et nulpunkt for f(2) —w, har via # 2, og derfor ifglge
(i)

R w)]

a er altsd et simpelt nulpunkt for f (2) —w. O

=f'(a) #£0;

z—

Seetning 16.4 Lad f: Q — C veere holomorf, men ikke konstant, i et omréde $2. Der geelder da
(D) Billedmeengden f() er et omréde;
(II) f er en dben afbildning, dvs.

ACQ, Adben — f(A) dben.
Bevis for (I): Af Seztning 16.3 fplger umiddelbart, at f(Q) er en dben punktmangde, og da en
kontinuert afbildning bevarer sammenhang (vis dette), er £(1) sammenhzngende. f(Q) er altsg
et omride.

Bevis for (I): Lad w, € f(A); wy = f(z0), 2z € A. Betragt en ben cirkelskive D —
D(z9;0) S A. Ifplge (1) er f(D) en dben punktmzngde, ogdawy € f(D) C f(A), er wy et
indre punkt i f(A), der altsi er Aben. m]

Satning 16.4 har som Korollar maximumprincippet (Setning 8.3, side 58). Hvis nemlig f
er holomorf, men ikke konstant i et omréde 2, og hvis vi betragter en &ben cirkelskive D —
D(29;6) S Q, sa findes der, da f(D) er &ben, et punkt a € D, séledes at |f(a)| > |f(z0)]- | f]
kan altsd ikke have et lokalt maximum i 2p.

8

11€2)

Ganske analogt bevises, at der for Re foglImf geelder sdvel et maximumprincip som et mini-
mumsprincip: ’
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Seetning 16.5 Hvis f er holomorfi et omrdde §2, og hvis Ref (eller Ira f) har et lokalt maksimum
eller minimum i et punkt zy € (0, sd er f konstant i §2.

Satning 16.5 kan ogsd bevises ved at anvende maksimumprincippet (som formuleret side 58) pa
funktionerne exp(f(z)), exp(—f(2)), exp(—if(z)) og exp(if(2)).

Seetning 16.6 Lad f: Q0 — C veere holomorf og injektiv i et omrdde ). Der geelder da

(@) f'(2) #O0forallez € Q2 ;

(b) f~* er holomorfi omrédet F(9).
Bevis for (a): Antag f'(z0) = 0 i et punkt 29 € . Lad wy = f(2) og lad k vere bestemt som
i Setning 16.3. Sd er k > 2. Vezlg &bne cirkelskiver D(zp; ) og D(wp; p) som i Setning 16.3.

Ethvert punkt i D' (wq; p) er altsd billede ved f af k forskellige punkter i D'(zo; ), hvoraf fglger,
at f ikke er injektiv.

Bevis for (b): Vived, at f er en dben afbildning, hvilket, da f er injektiv, er ensbetydende med,
at f~! er kontinuert i omrédet f(£2). Beviset for, at f~! er holomorf i ethvert punkt wy € f(£2)
forlgber pd sedvanlig vis:

fHw) = flwy 1 N for w — wy
_ T w)—f(f(we)) T ’
w Wo f—l(w)—f_l(wg)o f (ZO)
hvor zg = f~(wp). Vi ser, at (f 1) wp = ’(lzo)' | -

Bemerk, at vi ikke af f'(z) # 0 for alle z € Q kan slutte, af f er injektiv i Q. Eksponentialfunk-
tionen er et modeksempel herpd. Giv andre modeksempler.

17 Lokal opférsel af en holomorf funktion.

Vi vil undersgge, hvorledes en funktion f, der er holomorf, men ikke konstant, i et omrade €2,
opfgrer sig i en passende lille omegn til et punkt 2y € (2.

Q
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Ved en omegn til 2 € 2 forstir vi i denne paragraf et omride U € Q, sdledes at 2y € U. Ifplge
Seetning 16.4 ersy V = J(U) en omegn til wy = f(z0) € ().

ey F(2) = wo + ax(z — 2)* + gy, (2 — 20) ..
der gelder i enhver 8ben cirkelskive D(z;6) C Q.
Hererax = f®)(20) k!, 0gk > 1 er bestemt ved f'(2) = - .. = FED(z) =0, F®(z) £ 0.

Af (1) folger, at f kan fremstilles pé formen
#)) f(2) = wo + ag(z — 20)* +e(2) (2 — 20)F, z €1,
hvore(2) — 0 for z — 2. (Faktisk er e(z) holomorf i oge(zo) = 0)

Nir z ligger teet ved 2, er leddet €(2)(2 — 29)* forsvindende lille i forhold til leddet ay (2 — 2)*.
Len tilstrekkelig lille omegn U til zg er f(z) altsi approksimeret med funktionen

3) ©(2) = wo + ag(z — 20)", zeC.

Vi kan fglgelig forvente, at f i en tilstrekkelig lille omegn til zy opfgrer sig som den elementzre
funktion @, og vi vil nu nermere gere rede for, at det virkelig forholder sig saledes.

Vi betragter fprst Tilfaeldet £/ (z0) # 0.

(2) og (3) antager s& formerne

2) f(z) =wy + f'(20)(z — 2z0) + e(z)(z — z), z2€N;
(3 ©(2) = wy + f'(20)(z - 2p), z€eC.

Afbildningen ¢: C — C er en ligedannethedstransformation. Mere udfgrligt er ¢ sammensat af
fglgende fire afbildninger: :

1) en parallelforskydning, der fgrer Zg overiQ,

2) en multiplikation ud fra O med konstanten |f'(20)],

3) en drejning omkring 0 med drejningsvinkel arg f/(z),
4) en parallelfbrskydning, der fgrer 0 over i wg.

Len tilstreekkelig lille omegn U til 2o er f altsd tilnzermelsesvis en ligedannethedstransformation,
og f(U) er tilnzermelsesvis et ligedannethedsbillede af U, Vi udtrykker ofte dette ved at sige,
at f er konform i zg. Hvis f'(z) # 0 foralle z € §, siger vi, at f er konform i £2. At f
tilnermelsesvis er en ligedannethedstransformation i [/ far os specielt til at forvente, at foer
injektivi U og at f er vinkeltro i 29- Lad os bevise disse to ting.
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Seetning 17.1 Lad | | veere holomorf i et omréde 2. Lad zy € Q og f'(z0) # 0. Der findes da
omegne U og V til henholdsvis zy og wy = f(20), sdledes at f er en bijektion af U pa V.

S

Kommentarer: Den omvendte afbildning g: V — U bestemt ved g(f(2)) = z foralle z € U er
sd holomorf i V, jevnfgr Sztning 16.6. Hvis vi har lyst til det, kan vi abenbart velge U eller V
(men almindeligvis ikke bdde U og V') som en dben cirkelskive.

Bevis: Valg &bne cirkelskiver D(zo;7) og D(wo; p) som i Setning 16.3. Da k = 1 er ethvert
punkt w € D(wp; p) altsd billede ved f af preecis ét punkt i D(zg; 7).

Lad V = D(wo; p) og U = D{zp; p) N f~1(V). Sdharvizo € U S Qogwy € V C f(R),0g f
er en bijektion af U pd V. At U er en omegn til zp, altsd at U er et omrade, fplger af, at f er sivel
kontinuert som 8ben og derfor en homeomorfi af U pd den &bng, cirkelskive V. O

D(z,1)

Setning 17.2 Lad f vere holomorfi et omride Q. Lad zy € 2 og f'(z0) # 0. Sé er f vinkeltro
i 29. (Det vil fremga af det fplgende, hvad vi mener dermed).

Bevis: Lad v: [, 8] — Q veere en vej i £ med begyndelsespunkt i zg (altsd y(a) = zp) og antag
7' (e) # 0. S& har 7y en halvtangent i 29, bestemt ved det komplekse tal v'(c), opfattet som vektor

afsat ud fra zp. .
Billedet ved f af y er en vej I' i f(£2) med begyndelsespunkt i wo = f(20), og af

4 ['(e) = f'(20)7' () #0

fremgar, at I" har en halvtangent i wy, bestemt ved det komplekse tal I''(), opfattet som vektor
afsat ud fra wg.
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Af (4) folger argT'(a) = argv'(a) + arg f' (20), hvilket viser, at halvtangenten for T' i wy
fremkommer ved at dreje halvtangenterne for 7Y i % vinklen arg f'(z).

Da vinklen arg f'(zo) er uafhangig af -y, fplger det, at hvis 71 0g 72 er to veje i §2, begge med
begyndelsespunkt i zy og begge med halvtangent i z9, s& fores de ved f overitoveje 'y og I'y
i f(€2), begge med begyndelsespunkt i wy og begge med halvtangent i wy, og vinklen fra 7 til
72 (regnet med fortegn) er lig med vinklen fra I'; til I'; (ogsa regnet med fortegn). Her forstar vi
ved vinklen fra 7, til v, vinklen fra halvtangenten for 7y, i 2 til halvtangenten for 7y, i Zp; analogt
for vinklen fra T'; til I'. _ O

Specielt vil to veje i §2, der tangerer hinanden (eller er ortogonale) i 2y, ved f fares over i to veje,
der tangerer hinanden (henholdsvis er ortogonale) i wy.
Vi betragter dernaest Tilfeeldet £/(2,) = 0.

Lad os for simpelheds skyld antage 25 = wg = 0. Det er ikke nogen vasentlig indskrenkning
at ggre denne antagelse, idet det generelle tilfelde ved to parallelforskydninger let reduceres til
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tilfeeldet 2y = wy = 0.

(2) og (3) antager s& formerne

2"  f(2) = ak2® + e(2)2F, zZ€Q,
(37 0(2) = a2F, zeC

hvorag #0ogk > 2.
Lad b veere en af veerdierne af #ay. Vi har da
o(z) = (b2)*,  ze€C,

hvoraf fremggr, at p er en ligedannethedstransformation efterfulgt af en oplpftning til k’te potens.
Vi kan forvente, at f i en tilstreekkelig lille omegn til zg tilnzermelsesvis er af samme natur som
, altsd at der geelder fglgende Satning:

Setning 17.3 Lad f veere holomorf, men ikke konstant, i et omréide Q, der indeholder 0. Lad
f(0) =0.Lad k > 1 veere bestemt ved fl(0) =--. = f=1(0) = g, F®(0) £ 0.
Der findes da en omegn U til 0, séledes at
f(z)=(h(2))*, zeU,
hvor h er holomorf og injektiv i U.

oploftning
til k’te

+ _/7/_, + potcns
— N
VTV 7S

U h(U) )
\;L/

Kommentarer: Vi kan benbart Vaelge/U, s& h(U) og dermed f(U) er en &ben cirkelskive med
centrum i 0. Det er gjort pd ovenstéende figur, der svarer tilk = 3. Fork > 1 er f ikke vinkeltro
i 0. Ggr rede for, hvad der sker med en vinkel med toppunkt i 0.

Bevis: Da 0 er et nulpunkt af k’te orden for f, har vi
f(2) = 2*fi(2), z € £},

hvor f; er holomorf i 2 og f;(0) # 0.

E
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Lad D(0;6) S Q veere en dben cirkelskive, sledes at fi(2) # 0 for alle z € D(0;6). SA findes
der en holomorf {/f,(2) i D(0;6). Lad f, veere en sidan. fp er altsd holomorf i D(0;4), og
f1(2) = (f2(2))* foralle z € D(0;9).

Visalter h(z) = z2fa(z), z € D(0;6). Vi harsi
f(z) = (M(=2))*, 2 € D(0;0).

AL H(0) = f,(0) # 0 (fordi f,(0) # 0) fplger, at der findes en omegn U til 0, U € D(0;9),
sélledes at A er injektiv i U. Hermed er Satning 17.3 bevist.

O

N
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Opgaver

Opgave 66.
Find polerne og de tilsvarende residuer for den i C meromorfe funktion f(2) = exp z/ (23 — 2).

Opgave 67.
Find polerne og de tilsvarende residuer for den i C meromorfe funktion f(2) = sinh z/(sin 2)>.

Opgave 68.
Vis, at hvis f har en isoleret singularitet i et punkt zo, s er Res(f’; 29) = 0.
Vis, at der forn = 0,1,2,... gelder

1

d
(cot 2)" = % [(cot 2)" ] — (cot 2)™*?

og udnyt dette til at bestemme Res((cot 2)*;0), n =0,1,2,....

Opgave 69.

Betragt for ethvert R > 0 den lukkede polygonvej y(R) = [-Ri, m — Ri, m + Ri, Ri, —Ri).
Lad n vare et positivt helt tal.

Gogr rede for, at

Res ((tan 2)"; 7_r) = - Ji ! / (tan 2)"dz,
Z AR)

== m —
R—+o0 271
og udnyt dette til at bestemme Res ((tanz)™; ) .

Opgave 70.
Lad f, g og h vare holomorfe i et omrade, der indeholder punktet 2.

1. Idet det antages, at zg er et nulpunkt af anden orden for g, skal man vise, at

Sl L z _ 6/'(20)g"(20) — 2/ (20)9" (20)
Ren (53 WaE

2. Idet det antages, at 2o er et nulpunkt af fgrste orden for A, skal man vise, at

es L 2 — f,(zﬂ)h’(Z()) = f(Z())h”(ZU)
& (h2’ °) (0 (z0))? -

Opgave 71.
Vis, at

2m
dt 2
/ T , aeR, a>1;
0

a+sint: a2——1‘
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Opgave 72.
Vis, at

/W cosnt ITr—aa2 a€ C’ Ia'l < 11
0

— 2 :
1—2acost+a En(ag*—n aeC, |a > 1.

(n er et positivt helt tal).
Opgaven kan lgses ved metoden i Eksempel 1, side 88. g
Regningerne bliver simplere, hvis man udnytter, at

" isinnt
: dit =@
/,, 1 —2acost+ a? '

idet integranten er en ulige funktion.

Opgave 73.
Find veerdierne af integralerne
+o0 _ 2 o0 2 +co 2 __
\/ / 22—z + dz: / T dz; / _L da.
:v4+101:2+9 o 1+t o z*+5z2+4
Opgave 74.
Find vaerdien af integralet
v d teR
- /0 1+22 007 <
Vejledning: For t > 0 kan vejen i Eksempel 2, side 89, benyttes.
Vis, at
/ +to cosg m
——dz = —.
o 1+2z2 2e
Opgave 75.

Vis ved hjelp af vejen pa figuren til venstre, at

. too g ™
e / T = L, n=2,34,...
0 1+z® sin}
| — >
(r>1)
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Opgave 76.

Integrer funktionen Log z/(1 + 2*) langs vejen pa hosstdende figur og
vis derved, at

Z
<

/+°° Logz de ——sz\/ﬁ
0

1+z¢ "~ 16
i€ L |
\\ > > / 1+ :r4 W\/_
€ r &
(0<e<li<r)
Opgave 77.

Lada vaere et reelt tal, 0 < a < 1
Integrer funktionen

eaz

1+ e?

fz) =

langs den lukkede polygonvej y: [—r, 7,7 + 27, —r + 2mi, —r], 7 > 0, og vis derved, at

+0co e T
dz = — .
0 e sin am

Benyt dette resultat til at bestemme vardien af integralet i Eksempel 3, side 91.

Opgave 78. -
Integrer funktionen e**/ cosh z langs den lukkede polygonvej [—r, , 7+ i, —r +mi, —r], 7 > 0,

og find derved integralet
+oco
/ cosS T .
0 cosh z
Opgave 79.

Lad 2 = C\ {z € R | z > 0} og lad logz vare den i Eksempel 3, side 91 betragtede
determination af logaritmen i {2. Integrer funktionen (log z)?/(1 + z)* langs vejen i Eksempel 3,

og vis derved, at
/ T Togz 1
de = ——.
0 (1+2)? 2
Opgave 80.
Integrer funktionen Log z/2® — 1 langs vejen i Opgave 76 og vis derved, at

+c0 L 2
/ BT gp="T".
0 z?2 -1 4
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Opgave 81.
Lada € C, |a| >e, n€Z, n> 0.
Vis, at funktionen

f(z) = €* — az", z€C,

hvor praecis n forskellige nulpunkter i D(0; 1).

Opgave 82.
Lada € R, a > 1. Vis, at funktionen

vV fe)=a—2z—¢e?, z € C,

har preecis €t nulpunkt i halvplanen Rez > 0, og at dette nulpunkt er reelt.

Opgave 83. o
Lad f vaere holomorf i et omride, der indeholder den lukkede cirkelskive D(0; 1). Antag, at
|f(2)| > 1 for |2] = 1 og at f(0) = 1. Vis, at f(2) har mindst ét nulpunkt i D(0; 1).

Opgave 84.
Bestem ved hjzlp af Rouchés S@tning antallet af nulpunkter (hvert nulpunkt talt s mange gange,
som ordenen angiver) for polynomiet

2" — Bzt 4 22 -2

i ringomradet {z € C|1 < |z| < 2}.

Opgave 85.
Lad f vere holomorf og injektiv i D(0; 1). Lad f(0) = 0. Ggr rede for, at der findes en funktion
g, der er holomorf i D(0; 1) séledes at

(9(2))? = f(2?) for alle z € D(0;1).
Vis, at g ogsa er injektiv i D(0; 1). |
Opgave 86. :

Lad f: D(0;1) — D(0;1) vaere holomorf i D(0; 1) og kontinuert i D(0;1). Vis, at f har pracis
ét fixpunkt.
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18 Isomorfe omrader. Riemann—flade,.

To omrader 2 og ' i den komplekse plan siges at vere konformt sekvivalente eller isomorfe,
safremt der findes en bijektiv, holomorf afbildning f: 2 — ', og i s8 fald siges f at veere en
isomorfi af Q pa (2.

Hvis f er en isomorfi af omridet 2 p& omrddet ', si er f’(2) # 0 foralle z € 2, (Seetning 16.6),
og f er altsd en konform afbildning af 2 pa €2'. Specielt er f vinkeltro i ethvert punkt z, € Q.
Den omvendte afbildning f~! er en isomorfi af ' pa 2, (Setning 16.6). Isomorfe omrader er
klart homeomorfe og har derfor samme topologiske natur. Hvis f.eks. det ene af de to isomorfe
omréder er enkeltsammenhangende, ma det andet ogsa vere det.

Det geelder ikke altid omvendt, at homeomorfe omrdder er isomorfe. Et sarligt simpelt mod-
eksempel er hele planen og en dben cirkelskive, idet der galder

Seetning 18.1 Omrdderne C og D(0;1) er homeomorfe, men ikke isomorfe.

Bevis: Funktionen p(z) = qp 2 € G, eren homeomorfi af C pd D(0;1).
Hvis f er en isomorfi af C pd D(0; 1), sé er f holomorf og begrenset i C og derfor ifplge Liou-
villes Sztning konstant i C, hvilket er en modstrid. O

Hvis f er en isomorfi af omradet £2 pa omrddet (¥, og vi gnsker at studere afbildningen f ngjere,
kan vi ggre det ved at betragte to systemer af pene kurver i §2 (linier, cirkelbuer, ellipsebuer, etc.)
sdledes beskafne, at der gennem ethvert punkt i {2 gér én og kun én kurve fra hvert af systemerne,
og disse to kurver skaerer hinanden under en ret vinkel. Et sddant par af kurvesystemer i {2 vil
vi kort kalde to ortogonale kurvesystemer i £2. Eksempelvis er et kvadratnet i 2 del af to
ortogonale kurvesystemer i £2. (Se figur naste side).

Da f er vinkeltro og bijektiv, vil billedet af to ortogonale kurvesystemer i {2 vaere to ortogonale
kurvesystemer i 2’ og ved at bestemme disse opnér vi normalt et udmeerket overblik over afbild-
ningen f.

Hvilket par ortogonale kurvesystmer i {2, det er mest hensigtsmassigt at vaelge afhenger af 2 og
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. I de fglgende paragraffer og opgaver vil vi trzeffe cksempler pd isomorfe omrﬁder,.isomorﬁer
og korresponderende par af ortogonale kurvesystemer.

Hvis f: §2 — C er en holomorf, men ikke injektiv, afbildning, er f~! en flertydig funktion i £/
til £2. Man kan komme ud over denne flertydighed og skaffe sig et bedre overblik over fogf1
ved at indfgre Riemann—fladen for f~1. Lad os antyde ideen bag dette begreb ved at betragte
situationen skitseret pd fglgende figur.

JQ)=
Qr

/
O /‘\

Vitenker os, at f er injektiv i 1 og 05, men at £(2;) og £(Q,) overlapper hinanden. Riemann—
fladen for f~' fremkommer nu ved, at vi forestiller os f(£2) som en flade F, der delvis over-
dackker sig selv. Over ethvert punkt i f(€;) N f(£22) ligger der altsé to punkter pd fladen F, et i
hvert “blad” af 7. S& kan f opfattes som en bijektion af 2 pa fladen F, og f~1, der er flertydig
i{Y, bliver entydig pd F.

[ de neeste paragraffer vil vi skitsere Riemann—fladen for de flertydige funktioner {/z, logz og
arcsin z.
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19 Riemann-fHaden for {v[ .

Lad os behandle tilfeldet n = 5.

Vi betragter altsd afbildningen f: C — C bestemt ved f(z) = 2%, z € C. Vi forudsztter, at
leseren er fortrolig med denne afbildning.

Den omvendte relation f~! = ¢ er en flertydig funktion i C (5-tydig i C \ {0}, for at veere
precis). Vi vil, uden at ggre forspg péd at vere stringente, konstruere Riemann—fladen for e
Hertil betragter vi de fem halvlinier, som ved f fgres over i halvlinien {z € R|z > 0}, og de fem
vinkelrum, der bestemmes ved disse halvlinier. Vi betegner vinkelrummene med V3, Vo, V3, V4, Vs
og nummererer halvlinierne som vist pa figuren.

2)

Vinkelrummene skal opfattes som lukkede punktmangder. De to begrensende halvlinier regnes
altsd med til et vinkelrum og hver af de fem halvlinier hgrer pa den made med til to af vinkel-
rummene.

Som bekendt er f en isomorfi af hvert enkelt af de tilsvarende dbne vinkelrum pd omridet
C\ {z e R|z > 0}.

Lad os opskere den komplekse plan langs halvlinien {z € R|z > 0}
og tenke os snittet forsynet med to rande som antydet pd figuren til
venstre.

RN

/
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Lad C;, Gy, C3, Cy, Cs vere fem cksemplarer af den sdledes opskarne komplekse plan.

g%

0 s
s
7

/

7

/

(1)

AN

&

For ethvert j = 1,2,3,4,5 kan restriktionen af f til vinkelrummet V; opfattes som en bijek-
tion af V; pd C;. Randtilordningerne er angivet pa figuren (med numre) Riemann—fladen for

fremkommer nu ved, at vi forestiller os de fem komplekse planer C;, C,, C3, C4, Cs stablet
ovenpz‘i hinanden og snitrandene klaebet sammen to og to i overensstemmelse med nummererin-
gen. Vi klzber altsd den nederste snitrand i C; sammen med den gverste snitrand i C,, og sa
videre. Derved forekommer en flade F, som vi besknver som en fembladet Riemann—flade med
€t forgreningspunkt i O af femte orden.

Vil vi foretage sammenklebningen rent fysisk, opstdr der selvgennemskaringer for F. Disse
skal opfattes fiktivt, sdledes at forstd, at ndr vi bevaeger os f.eks. fra nederste halvdel af blad Cs
til pverste halvdel af blad C; over de sammenklzbede snitrande (1), s& skal den gvrige del af F

vaere usynlig for os.
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[det vi forestiller os F liggende over den komplekse plan C, har vi altsd, at der over ethvert punkt
z € C\ {0} ligger fem forskellige punkter pd F, €t i hvert blad af F. Over punktet 0 € C ligger
der ét og kun ét punkt pd F, nemlig forgreningspunktet 0 € F.

Bevaeger vi os pd F omkring 0, vil vi efter hvert omlgb komme ind i et nyt blad af F, og efter
fem omlgb vil vi vzere tilbage pd det blad, hvor vi startede.

[ kan opfattes som en bijektiv afbildning af C p& F og har séledes opfattet en omvendt afbildning
g: F — C. Viser, at veerdierne af g i de fem punkter pd 7, der ligger over et punkt z € C\ {0},
netop er de fem veerdier af ¥/z, og at g(0) = V/0. Det er derfor rimeligt ogsd at bruge betegnelsen
¥/ for g og at tale om, at den flertydige funktion ¢ er en éntydig funktion, ndr den opfattes som
en funktion pd Riemann—fladen F.

[ analogi med tilfeeldet n = 5 kan vi for ethvert helt tal n > 2 konstruere en Riemann—flade for
3/ pa hvilken den flertydige funktion ¢/ kan opfattes som en éntydig funktion. Det bliver en
n-bladet Riemann—flade med ét forgreningspunkt i 0 af n-te orden.

NI
7

n=2

W

Q) A=<
VNN N
N\ N\ N\, \ A\
\ < NN O N N
\\ N NN N N

*\ NN \
\ \, O "
NN N NN N
NN N\ \\

20 Riemann—fladen for log.

Vi betragter eksponentialfunktionen exp, der som bekendt afbilder den komplekse plan C pé den
udprikkede komplekse plan C \ {0}. Laseren forudsettes fortrolig med denne afbildning.

Den omvendte funktion til exp er den komplekse logaritmefunktion log, der er en flertydig funk-
tion: til ethvert punkt 2 € C \ {0} svarer der uendeligt mange vardier af log z.
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Vivil, stadigvaek uden forsgg pa at vicre stringente, konstruere Riemann—fladen for log . Hertil
betragter vi de lukkede parallelstrimler

Pi={z€eC| —7m+j2r <Imz < 7+ 527},

J=0,£1,+2,... . Som bekendt er exp en isomorfi af hvert enkelt af de tilsvarende 8bne paral-
lelstrimler pd omradet C \ {z € R|z < 0}.

Lad os opskere den udprikkede komplekse plan C \ {0} langs halvli-
ks, nien{z € R|x < 0} og teenke os snittet (bortset fra 0) forsynet med
to rande som antydet p8 figuren til venstre.

7

Lad C; \ {0}, j = 0,£1,4£2,..., vare et telleligt antal eksemplarer af den sdledes opskarne
udprikkede komplekse plan. Se figur naste side.

For ethvert 7 = 0,41, +2, ... kan restriktionerne af exp til parallelstrimlen P; opfattes som en
bijektion af P; p& C; \ {0}. Randtilordningerne er angivet pé figuren pé nste side (med numre).
Riemann—fladen for log fremkommer nu ved, at vi forestiller os de udprikkede komplekse pla-
ner C; \ {0}, j =0,£1,42,..., stablet ovenpd hinanden og snitrandene klebet sammen to og
toi overensstemmelse med nummereringen. (Denne gang kan vi forestille os sammenklabningen
foretaget uden selvgennemskeringer). Derved forekommer en uendelig-bladet Riemann—flade
F, nzrmest af karakter som en “sammenklappet vindelflade”.

Idet vi forestiller os F liggende over den komplekse plan C, ligger der alts over ethvert punkt
z € C\ {0} uendeligt mange punkter pi F, ét i hvert blad af F. Bemerk, at der over 0 € C
ikke ligger noget punkt pd F. Alligevel vil vi sige, at F har et forgreningspunkt i 0 af uendelig
orden.

Bevager vi os pd F omkring 0, vil vi efter hvert omlgb komme ind i et nyt blad af F, og vi vil
aldrig komme tilbage til-et blad, hvor vi har varet fgr, medmindre vi skifter omlgbsretning.

exp kan opfattes som en bijektiv afbildning af C pd F. Ggr vi det, har exp en omvendt afbildning
g: F — C. Vi ser, at vaerdierne af g i de uendeligt mange punkter pi F, der ligger over et punkt
z € C\ {0}, netop er de uendeligt mange vzrdier af log z. Det er derfor rimeligt ogs4 at betegne
g med log og at tale om, at den flertydige funktion log er en ¢éntydig funktion, nir den opfattes
som en funktion pd Riemann—fladen F.

Overvej (uden at veere stringent), at hvis «y er en kurve i C \ {0}, sa kan 7 opfattes som en kurve
7 pd F, og at dette heenger sammen med eksistensen af en kontinuert log z-funktion langs .
Overvej videre, at selv om 1y er lukket, s er 7 ikke ngdvendigvis lukket, og angiv sammenhangen
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mellem Ind(; 0) og placeringen af begyndelsespunkt og endepunkt for ¥ pa F. Overvej specielt,
at Ind(y; 0) = 0 nr og kun nér ¥ er en lukket kurve pa F.

21 En bemerkning om trigonometriske og hyperbolske funk-
tioner. |

Lad os ggre os klart, hvorledes vi rimeligt skal gribe et studium af de (komplekse) trigonometri-
ske og deres omvendte hyperbolske funktioner an. -
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Som bekendt er de trigonometriske funktioner definerede ved

ezz + e—'lZ

cosz:T, z€C;
sinz:L__e—Z, z€C;
21
- ceer{fmlpen)
cotz:zﬁjj, zEC\{mlpEZ}.

Deres omvendte funktioner, der alle er flertydige, betegnes henholdsvis arccos, arcsin, arctg og
arccot . De hyperbolske funktioner definerede ved

coshz:i, ze€C;
2
sinhz =S¢ , ze€C,;
2
Sl 2eC\{™ 4 prilpez
z = o i
& coshz ’ g TP P ’
cosh z ]
cothz = — , zeC\{pmlpEZ}.
sinh 2
Af
z
coshz:cos;, zeC;
. L. 2
smhz:zsmz—., z2eC;
tghz:itg;if, zEC\{%Z+p7rz'lpEZ};
1 =z .
cothz = ~cot -, zeC\{pmlpeZ}.
i i

fremgdr for eksempel, at afbildningen sinh: C — C er sammensat af fglgende tre afbildninger:
1) en drejning om 0 (drejningsvinkel —%) ,
2) afbildningensin: C = C,

3) en drejning om O (drejningsvinkel + 7) ,
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Analogt for cosh, tgh og coth.
Det er derfor nok at studere de trigonometriske funktioner.

cosz:sin(’z—'—z), z €C,

cotz =1tg (% —2), z€ C\{pr|pe€ Z},

fremgar videre, at det er nok at studere funktionerne sin og tg. Vi vil studere sin i nzste paragraf.
Vedrgrende tg bemearker vi, at der af

1 e*® —1

fremgér, at afbildningen tg: C\ {§ +pr|p = 0,%1,...} — C er sammensat af fglgende fire
afbildninger
1) en drejning om O (drejningsvinkel + %),
2) multiplikation med 2,
3) exp,
1¢-1

4) afbildningen  bestemt ved p(¢) = ;&35

@ er et eksempel pé en sdkaldt homografisk transformation. Disse vil blive behandlet generelt i
§24, og studiet af tg (der overlades til l&seren) udsattes hensigtsmeassigt til efter denne paragraf.

22 Sinus og Riemann—fladen for arcsin.
Afsin(z + 27) = sinz og sin(z + m) = — sin z fremgdr, at det er rimeligt at begynde med at
undersgge sin i en lodret parallelstrimmel af bredden m. Vi velger parallelstrimlen
P={z+iyeC| -F<z<% —c0o<y<+oo}.
Vi vil vise, at sin er en isomorfi af P pd omrédet |
Q=C\{u+iveC||u>1v=0},

og vi vil beskrive afbildningen sin: P — (2 ved at angive billedet i {2 af de to ortogonale kur-
vesystemer i P, der bestdr af henholdsvis liniestykkerne parallelle med z-aksen (af lengde T,
gennemlgbet fra venstre mod hgjre, endepunkterne ikke medregnede) og linierne parallelle med
y-aksen (gennemlgbet nedefra og op). Se figuren side 119.

Vi har

1) sin z = sin(z + 4y) = sinz coshy + i cos T sinh y .
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Heraf fremgir, at liniestykket
(2 z=z+ 1y, -7<z<i%,
som billede har kurven med parameterfremstillingen

u = cosh yg sinx

&)

™ ™
: — s <<T<L 5.
v = sinh cosa:} 2 2

Foryo > 0 fremstiller (3) den i gvre halvplan {u+iv € C|v > 0} beliggende halvdel af ellipsen
med ligningen
- X -

(coshyo)2 + (sinh go)?

“4) =1,
gennemlgbet fra venstre mod hgjre. Skiftes fortegn pd Yo, fremstiller (3) deni den nedre halvplan
{u+14v € C|v < 0} beliggende halvdel af ellipsen (4) gennemlgbet fra venstre mod hgjre. For

Yo = O er liniestykket (2) det dbne interval |-, 7| pd z-aksen, og billedkurven (3) er det &bne
interval |1, 1] pd u-aksen. Vi kan opfatte ]—1, 1[ som en udartet halvellipse.

Alle halvellipserne har, uafhzngigt af yo, breendpunkter i —1 og 1. (Fordi halvakserne er cosh yj
og | sinhyo|, og (cosh yg)? — (sinh yp)? = 1).

Af (1) fremgdr videre, at linien
5) z2=xz9+ 1y, —0 <y < +4oo.
som billede har kurven med parameterfremstillingen

u = sinxy coshy
) . —oo<y< +o00.
v = cos Ty sinhy

For 0 < zo < 3 fremstiller (6) den hgjre gren af hyperblen med ligningen

u? v?

@ (sin zg)? B (cos zp)? =1,

gennemlgbet nedefra og op. Skiftes fortegn pé zo, fremstiller (6) den venstre gren af hyperb-
len (7), gennemlgbet nedefra og op.

For g = 0 er linien (5) y-aksen, og billedkurven (6) er v-aksen. Vi kan opfatte v-aksen som en
udartet hyperbelgren.

Alle hyperbelgrenene har, uatheengigt af zo, brendpunkter i —1 og 1. (Fordi halvakserne er
| sin zg| og cos g, og (sin z)? + (cos z,)? = 1).

Vi har altsd vist, at billedet af det betragtede par ortogonale kurvesystemer i P er de to kurvesy-
stemer, der bestdr af henholdsvis halvellipserne med breendpunkt i —1 og 1 (fra venstre toppunkt
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til hgjre toppunkt, disse toppunkter fraregnede) og hyperbelgrenene med brendpunkter i —1 og
1. Da alle disse kurver forlgber i 2, og da der gennem éthvert punkt i Q gfr én og kun én hal-
vellipse med breendpunkter i —1 og 1 og én og kun én hyperbelgren med brendpunkter i —1 og
1, ser vi, at sin er en bijektion af P pd Q; sin er altsd en isomorfi af P pa Q. Heraf fplger, at de
betragtede halvellipser og hyperbelgrene udggr to ortogonale kurvesystemer i €2, hvilket igvrigt
ogsd fplger af, at tangenten til en ellipse (hhv. en hyperbel) i et punkt af ellipsen (hhv. hyperblen)
halverer supplementsvinklen (hhv. vinklen) mellem braendstralerne til punktet.

Den omvendte afbildning af £ pd P betegnes Arcsin og kaldes hoveddeterminationen af den
flertydige funktion arcsin .

Billedet ved sin af linien z = —5+iy, —oo < y < 400, er kurven med parameterfremstillingen

u=—coshy}
—oco<y<+4oo.
v=_0

altsi halvlinien {u + iv € C|lu < —1, v = 0} gennemlgbet to gange, fgrst fra venstre mod
hgjre, dernest fra hgjre mod venstre. Vi kan opfatte denne kurve som en udartet hyperbelgren.
Analogt er billedet ved sin af linien z = § + 14y, —co < y < 400, halvlinien {u + iv € Clu >
1, v = 0} gennemlgbet to gange, fprst fra hgjre mod venstre og dernzst fra venstre mod hgijre.

" \

A A ~ 1
A .
L4
sin
3 S S
o~
Arcsin
> > y X o
: nj %%
A A\
L4 7
LN L Y
S ¥
L h b A

° 3
7
/ A

Viser, at sin kan opfattes som en bijektion ® af den lukkede parallelstrimmel {z+iyeC| -Z <
T < 5, —00 <y < oo} pé den komplekse plan opskéret langs halvlinierne {u + iv € Clu <
—1, v=0} og {u+4v € C|u > 1, v = 0} og forsynet med snitrande som antydet pa figuren
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gverst pd neeste side.

Randtilordningerne er angivet pd figuren (med numre)

= sin

P

.,;,///./

e
N
#
v
5

S

S

m]h

For at konstruere Riemann—fladen for arcsin betragter vi de lukkede parallelstrimler
{x+zyEC|—’§'+j7r§ 5 +Jm,—co <y< +oo}, j=0,+1
og et telleligt antal eksemp.larer af den komplekse plan: C;, j = 0, +1

.., opskérne og forsy-
nede med snitrande som nedenfor vist

T O (M )

Pt Pt PP

)
~

19
v

1) (O] (1) 2y (3)

Hvis j er lige, geelder der sin z = sin(z — j), og sin kan derfor opfattes som en bijektion af [
pd C; af samme art som @. Hvis j er ulige, geelder der sin z = — sin(z — jn), og sin kan derfor
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opfattes som en bijektion af P; pd C; af samme art som @ efterfulgt af en drejning pa 180° om

0.
Randtilordningerne er angivet pa figuren (med numre).

Riemann—fladen for arcsin fremkommer nu ved, at vi forestiller os de komplekse planer C;, j =
0,41, ... , stablet ovenpa hinanden og snitrandene klebet sammen to og to i overensstemmelse
med nummereringen. Derved fremkommer en uendelig-bladet Riemann—flade F.

Idet vi forestiller os F liggende pa den komplekse plan C, ser vi, at der over hvert af punkterne
—1 € Cog1l € C ligger uendeligt mange forgreningspunkter pd F, alle af orden 2.

sin kan opfattes som en bijektion af C p& F. Ggr vi det, har sin en omvendt afbildning g: F — C
og verdierne af g i de uendeligt mange punkter pd F, der ligger over et punkt 2 € C, er netop de
uendeligt mange vaerdier af arcsin z. Det er derfor rimeligt ogsd at betegne g med arcsin og at
tale om, at den flertydige funktion arcsin er en éntydig funktion, ndr den opfattes som en funktion
pa Riemann—fladen F.
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Opgaver

Opgave 87.
Betragt funktionen f(2) = 22, z € C \ {-1}.

1-2?

1. Vis, at f er en isomorfi af omradet C \ {1} pd omradet C \ {1}.

2. Vis, at f er en isomorfi af den &bne cirkelskive D(0;1) pa den &bne halvplan {2z €

C|Rez > 0}.

. Vis, at f er en isomorfi af den 8bne halvcirkelskive {zeC||7] <1, Imz > 0} pd den
dbne kvadrant {z € C|Rez > 0,Imz > 0}.
Vejledning til 2. og 3.: Vis farst, at

12
Ref(z) = Hﬁ ogImf(z) = IT21_LZZI2, (E=~ 1

feret eksempel pd en homografisk transformation. Disse vil senere blive behandlet gene-
relt. g ‘

Opgave 88.
Betragt funktionen f(z) = (2 + 1), z € C\ {0}.

L. Vis, at f er en isomorfi af omrddet Q = {z € C | |z2| > 1} pa omridet 2, = C \{z e

Rl —1<z<1}.

Vis, at f fgrer de to ortogonale kurvesystemer i  vist p3 figu-
ren til venstre over i de to ortogonale kurvesystemer i ;, der
bestar af ellipserne med breendpunkter i —1 og 1, og de to halve
hyperbelgrene (ogsé de udartede) med breendpunkter i —1 ogl.

Vis, at f er en isomorfi af D'(0;1) p4 ;. Angiv billedet ved 7
N af de to ortogonale kurvesystemer i D'(0;1) vist pé figuren til
venstre.
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4. Vis, at f er en isomorfi af den pvre halvplan {z € C|Imz > 0} pd omridet C \ {z €
R| |z| > 1}.

Opgave 89,

Gor rede for (bl.a. ved brug af f.eks. Opgave 87, punkterne 2. og 3., og Opgave 88, punkt 4.), at
nedennzvnte typer af omréder er indbyrdes isomorfe.

o

. . halvplan
Aben cirkelskive !

W /// o

£—

Aben parallelstrimmel —L L

72277

Aben haly parallelstrimmel

%z @ v

Abent Abent
vinkelrum ) cirkeludsnit

% %

« frarcgnet en halv linic

Abcen
halveirkelskive

 frarcgncet to disjunkite,
modsat rettede halvlinier

Opgave 0.
Vis, at sin afbilder C pd C og at tg afbilder C\ {5 +pr|p=0,+1,...} pA C\ {3, —i}.
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Udtryk de flertydige funktioner

arcsinw, w € G; arctgw, w € C\ {7, —i};

ved de flertydige funktioner / oglog.
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23 Den udvidede komplekse plan. Riemanns kugle.

I mange forbindelser er det hensigtmaeessigt at betragte den udvidede plan C*, der fremkommer
ved at fgje et ekstra punkt co til den szdvanlige komplekse plan C og forsyne punktmengden
C* = CU {oo} med den topologi, der defineres ved at bevare topologien i C og lade punkt-

mangderne
D(oo;r) ={2€ C||2| > r}uU{oo}, 0<r<+o0,

veare en omegnsbasis for punktet co. De tilsvarende udprikkede omegne til co er sd punktmang-
derne

D'(co;r) ={z€ C| 2| >r}, 0<r<+oo.

Punktet co € C* ma ikke forveksles med de to punk-
ter —oo og +o00, der fgjes til den reelle akse R for at

L OCSNONOCWNCOS O ON danne den udvidede reelle akse R*.

NN N> ’\ \ \ BN C* er dbenbart et kompakt topologisk rum. Faktisk

AR RS X\\\\\ er R*, som vi nu skal se, homeomorf med en kugle-
\ NN flade.

NN\ ‘

j \\\ \K‘/Z\\ \\ X

~\ ‘\\“ \ \\ \\\

\\ b \\T\_ \‘ g \?’\\'\,\7\\\
Betragt enhedskuglefladen i R?:

Se={(&n, ) eR|E€ +n*+* =1},

og identificer den komplekse plan C med &n-planen i R?, sdledes at den reelle akse identificeres
med £-aksen og den imaginare akse med n-aksen.

(t
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Lad N og S vaere punkterne (0,0,1) og (0,0,—1). N og S er altsi henholdsvis nordpolen og
sydpolen pd S,.

Ved stereografisk projektion fra IV (se figuren) er der etableret en bijektion pafCpd S, \ {N}.
Settes p(co) = N, er ¢ en bijektion af C* pa S,.

[ koordinater er ¢ givet ved -

_ ez mz  |z[>-1
) p(z) = (|§{I;+1 |§|I2+1 {z|2+1) , zeC,
p(o0) = (0,0,1),
og v~ er givet ved
- e EN O =T (6 €S\ (N},

v (0,0,1) = co..

Det er geometrisk klart og ses ogsd let af (1) og (2), at ¢ og ¢~ ! er kontinuerte. @ er altsd en
homeomorfi af C* pa Ss.

Sy kaldes Riemanns kugle, idet vi, nér vi bruger dette navn, ikke alene tznker pa S; som en
kugleflade, men ogsd pd den sammenhang, der er etableret mellem C* og S, via .

Ved en cirkel i C* forstér vi enten en saedvanlig cirkel i C eller en ret linie i C tilfgjet co. Hvis I
eren ret linie i C, vil vi altsd omtale [U {oo} som en cirkel i C* gennem oco. Vi ser, at der gennem
tre forskellige punkter i C* gér én og kun én cirkel i C*. Ved hjlp af (1) og (2) eftervises let, at ®p
og ¢~ ! er cirkeltro, alts at der til en cirkel i C* svarer en cirkel pd Sz og omvendt. Umiddelbart
observeres, at der til ! U {oo}, hvor [ er en ret linie i C, svarer en cirkel pd S, gennem N, og
omvendt.

Uden bevis skal det naevnes, at ¢ og ¢! ogsé er vinkeltro.

Afbildningen 2 + ; (vi satter § = co og = = 0) er en bijektion af C* p4 sig selv. Den til-
svarende bijektion af Riemann-kuglen pé sig selv er simpelthen drejningen p& 180° om &-aksen,
hvilket let ses ved hjelp af (1) eller (2).

Ved z — % afbildes en omegn til co bijektivt pd en omegn til 0, og den tilsvarende bijektion
mellem de tilsvarende omegne til henholdsvis N og S pa Riemann-kuglen er en kongruenstrans-
formation.

I ly af disse bemerkninger indfgrer vi fplgende definitioner:

En funktion f: D(oo;7) — C siges at veere holomorfi oo, safremt funktionen f ( 1) er holomorf
i0.

En funktion f: D'(co;r) — C, der er holomorf i D’(co; ), siges at have en isoleret singula-

ritet i co. Vi taler om, at f har en heevelig singularitet i co, en pol af orden % i oo eller en
vaesentlig isoleret singularitet i oo, alt efter som f( 5) har en havelig singularitet i 0, en pol af
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orden k i 0 eller en veesentlig isoleret singularitet i 0.

Nar f har en isoleret singularitet i co, kan f fremstilles som sum af en Laurentrakke i en udprik-
ket omegn til co:

+00

3) filz) = Z an2", z € D'(c0;7) .

n=-—co

f (%) har s Laurentrakkefremstillingen

. 1 = m ! 1
f(;): Z A_m2", zED(O;;).

m=—co

Funktionen
+co
Y(z) = Zanz", z€C,
n=1

kaldes den principale del af f hgrende til den isolerede singularitet co. Vi ser, at f \ 9 har en
havelig singularitet i co.

Til resultaterne i § 11 vedrgrende en isoleret singularitet i et punkt z; € C svarer analoge resultater
vedrgrende en isoleret singularitet i co. Bl.a. gaelder der

(a) f har en havelig singularitet i co, ndr og kun nér (3) antager formen
f(z) =ao+a_1z_1 —|—a,_2z-2+... ) = D'(OO;T‘),

altsd ndr og kun ndr f i en udprikket omegn til co kan fremstilles ved en potensrzkke i %
Singulariteten heves ved at sztte f(c0) = ag = lim, ;o f(2).

J har en havelig singularitet i co, nr og kun nér der findes en udprikket omegn til co,
hvori | f| er begranset.

(b) f har en pol af orden & i 0o, ndr og kun nir (3) antager formen
f(2)=az*+-- +arz+ag+a_1z  +agz2+--- , z € D'(oc0;7),

(k > 1, ax # 0), altsd nér og kun nﬁrAde_n principale del af f hgrende til co er et
polynomium af grad k.

f har en pol i co, nér og kun nér f(z) — co for z — co.

(c) (Weierstrass.) Hvis f har en vaesentlig isoleret singularitet i co, er f(D’(co; R)) en overalt
teet punktmeengde i C for ethvert R > 7.
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Seetning 23.1 De funktioner, der er meromorfe i hele den udvidede komplekse plan C* | er netop
de rationale funktioner, altsd Junktionerne af typen g%;" hvor P(z) og Q(2) er polyromier
(Q(2) # nulpolynomiet).

Bevis: En rational funktion ses let at vere meromorf i C*. Lad omvendt f veere meromorf i C*.

Da C* er kompakt, har f hgjst et endeligt antal poler. Lad 2y, 2y, . . ., 2,, vare polerne i C (hvis
der er nogen), lad kq, ks, . .., k,, veere deres ordener og lad @1, ¥, ..., pm vare de principale
dele af f hgrende til henholdsvis 21, 2y, . . . , z,. Lad k veere ordenen af polen i co, hvis f har en

polioo, oglad k = 0, hvis f er holomorf i co. Lad % veere den principale del af f hgrende til
oo (hvis f er holomorf i co, er 1 nulfunktionen).

Funktionen g = f — (¥ 491+ @2+ - ++¢p) er holomorfi C\{z1,2,...,2m} oghar hevelige
singulariteter i co 0g i 21, 22, . . ., 2m. g er fplgelig holomorf i hele C*. Da C* er kompakt, er |g|
begranset og g derfor konstant (Liouvilles Seetning). Benzvnes denne konstant ag, har vi altsi

4 f(2) = a0 +9(2) + 01(2) + @a(2) + - + om(2) .
Hermed er Sztning 23.1 bevist, idet funktionerne ¥, 01,92, - . ., Pm alle er rationale funktioner.
O _

Mere udfgrligt er 4 et polynomium (uden konstantled) i z af grad k, hvis k > 1. Hvis k — 0,
er 9 nulpolynomiet. p; er et polynomium (uden konstantled) i z_lz,- af grad kj, j =1,2,...,m.
(4) har altsd udseendet

f(R)=ap+arz+ -+ ar2* +

1 1
z—2z1 (z2—2)2 (z — z1)=
2
z—z (2—2)? (z — 2z5)k2
.+. [N +
AT A™ LA
Z2—2m (22— 2p)? (2 = 2y )fm

Denne fremstilling af den rationale funktion f kaldes partialbrgkfremstillingen af f. Den an-
tager et seerligt simpelt udseende, hvis alle polerne i C er simple poler.

Hvis en funktion f er meromorf i et omrdde 2 € C*, vil vi fra nu af tildele f verdien co i ethvert
punkt af {2, hvori f har en pol. Herved opnés, at f er defineret i hele £ og er en kontinuert af-
bildning af {2 ind i C*. Specielt er p4 den méde enhver rational funktion en kontinuert afbildning

af C*.
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24 Homografiske transformationer.

En afbilding f: C* — C* givet ved

az+b
= (04
(1) f(Z) cz + d’ Z E )
hvor de komplekse tal a, b, c og d opfylder
a b
e dl = ad — bc # 0,

kaldes en homografisk transformation eller kort en homografi. I litteraturen treeffes ogsd nav-
nene Mobius-transformation, linezer bruden transformation og (uheldigt, men ikke sjeldent)
linezer transformation.

Seetning 24.1 En homografisk transformation f er en homeomorfi af C* pd C*.

1 tilfeeldet ¢ = 0 er [ en isomorfi af C pa C. we @Zih

I tilfeeldet ¢ # 0 er f en isomorfiaf C\ {—%} pa C\ {}. T oad W73 dao az41,
_:t.

Bevis: 12 2 ead Iw-1
Tilfeldet c = 0. Sd era # 0 og d # 0 og f er simpelthen et fgrstegradspolynomium. f er altsi
holomorf i C og har en simpel pol i co. (1) antager udfgrligere skrevet udseendet

{f(z):gz—i-%, 2 €,
f(o0) =00

Vi ser, at f er en bijektion af C* p& C*, og at den omvendte afbildning f~! er givet ved
{ fFllw)=5w-2, weg,

T=too) =,

f7! er altsd en homografi. Det fremgdr, at svel f som f~! er kontinuerte, altsi at f er en
homeomorfi af C* pd C*. Yderligere fremgdr, at f er en isomorfi af C pd C. Mere precist: f er
en ligedannethedstransformation af C pa C (overvej!).

Tilfeldet ¢ # 0. S er f holomorfi C\ {—¢}, har en simpel pol i —¢ og en havelig singularitet
i 0o. (1) antager udfgrligere skrevet udseendet

floy=21,  2eC\{-%},
f(_g) = 80
floo) =
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Viefterviser let, at f er en bijektion af C* p3 C*, 0g at den omvendte afbildning f ! er givet ved

J7Hw) = b weC\ {2},

—cw+a’
f—l(oo):_g, w - azab
cz+
[P =00, wezawd = ezl
7. TOWtb z(wWc-a) T b-w

Cw - a
f~1 er alts en homografi. Det fremgdr, at sdvel f som f~! er kontinuerte, alts§ at f eren ho-

meomorfi af C* pd C*. Yderligere fremgsr, at f er en isomorfi af C \ {4} piC\ 13} |

I begge tilfeelde sé vi, at den omvendte afbildning f~! var homeografien givet ved

_ dw—b . a b &.—b)
fl(w):—cw—i—a’ AR QC‘/ 5\) c Q

Af Seetning 24.1 fplger specielt, at en homografi er vinkeitro, ndr bortses fra vinkler med top-
punkt i co. Betragtes den til en homografi svarende afbildning af Riemann-kuglen S» p4 sig selv,
gelder vinkeltroskaben ogsi for vinkler med toppunkt i N = ¢(c0).

Seetning 24.2 Mangden G af homografier udgpr en transformationsgruppe over C*.

Bevis: Lad ¥ vaere den fulde tranformationsgruppe over C*. Vi skal vise, at G er en undergruppe
1 F. Davi allerede har vist f € G = f~! € G, skal vi blot vise

ad-bec ©
f1€G, f€EG= fiofreg. (
& ad~ g
Vi betragter altsd to homografier
adh-lec =)

fl(Z)Z%, ZEC*,

=2 cecC.

- Udregning af f1(f2(C)) giver, at fi o f, er givet ved

af + 3
Y+’

(f10f2)(C): CEC*a

hvor
O‘IB _ a; b a b2
@ (57)=-(22)=(22)-

Regnerierne har mening, ndr ¢ # oo, f2(C) # co og (fi o f2)(¢) # oco. Af kontinuitetsgrunde
galder resultatet for alle ¢ € C*. ,

o Z4b
A e+ d = 0 A ')__\..64
_ /:ojz-&A‘o-v £ ) (:}\cwlﬂgxlﬂu ALLB
24t D . D4
C e i Cozt Ch+ D24 D4 (Cot De) 2 0 CloaD A




fiofyer altsi en homografi, hvormed Setning 24.2 er bevist. O

Lad os betragte gruppen M af 2 gange 2 matricer (komplekse elementer, seedvanlig matrixmul-
tiplikation) med determinant # 0.
Af (2) fremgar, at afbildningen

7 b
(25)— =22

er en gruppehomomorfi af M p& G. Kernen IV for denne homomorfi bestir af matricerne af

: ‘;) seC\ {o}.

Ifplge den fundamentale homomorfisztning for grupper er G gruppeisomorf med faktorgruppen
MJ/N.

formen (

Seetning 24.3 En homografi er cirkeltro. Hermed menes, at en homografi forer enhver cirkel i
C* over i en cirkel i C*. (Leeseren bedes genkalde sig definitionen pd en cirkel i C*).

Bevis: Vi bemearker f¢- st, at enhver homografi

: az+b .
f(z)_cz——{:_d’ zeC,

er sammensat af homografier af typen z — a2z + 3, (a, 8 € C, a # 0), og homografien z + };

Dette er trivielt, hvis ¢ = 0, og for ¢ # 0 fremgér det af

a ad—bc 1
f(z)—g— c cz+d’

zeC.

En homografi af typen z — az + 3 fgrer co over i co og er igvrigt en ligedannethedstransforma-
tion i C. Heraf fglger umiddelbart, at den er cirkeltro.

At homografien z — }; er cirkeltro fglger af, at den tilsvarende afbildning af Riemann-kuglen S,
pa sig selv er en drejning pa 180° om £-aksen.

At homografien z —> % er cirkeltro kan ogsa indses direkte, uden at indblande Riemann-kuglen,
for eksempel som fglger:

1) Cirklen {z € C||z| = r} fgres over i cirklen {w € C||w| = 1}.
2) Cirklen{z € C||z — 20| =1}, hvor 29 # 0 og 7 # | 20|, fores over i

w -

{w ec\{o}l |w|5' = lz_roT} .

Dette er forholdscirklen over punkterne le) og 0 svarende til forholdet r/|z|.
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3) Cirklen {z € C| |z — 2| = |2|}, hvor 2 # 0 fores over i

oL
{oo}udweC\ {0} | — 2 =1}
|w]
Dette er en cirkel i C* gennem oo, nemlig

: - 1
{oo} U {midtnormalen til liniestykket [0, —]} .
20

4) Citklen {z € C\ {0}|argz = ©} U {0,c0} gennem 0 og oo fgres over i
{we C\{0}] argw = -6} U {oo, 0}, ligeledes en cirkel gennem 0 0g 0.

5) Cirklen {z € C\ {0} | Izl;IaI = 1}U{co}, hvora # 0 (altsé en cirkel gennem oo, men ikke
gennem 0), fores over i cirklen {w € C| |w — 1| = 1},

O
Bemerk at en homografi ikke ngdvendigvis fgrer centrum for en cirkel over i centrum for bil-
ledcirklen.

Seetning 24.4  (a) En homografi, der ikke er identiteten, har enten ét eller to fikspunkter. En
homografi, der har tre fikspunkter, er altsd npdvendigvis identiteten.

(b) Hvis 2y, 23, 23 er tre indbyrdes forskellige punkter i C*, sg Jfindes der én og kun én homo-
grafi f, siledes at f(z1) = 0, f(z) =1, f(z3) = c0.

(¢) Hvis 2123, 23 er tre indbyrdes forskellige punkter i C* og hvis ¢y, C2, (3 er tre indbyrdes
forskellige punkter i C*, sd findes der én og kun én homografi f, siledes at f(z) =

G, f(2z2) = (o, f(z3) = G.
Beviserne, der er helt elementare, overlades til leseren.

Vier nu i stand til at undersgge enhver foreliggende homografi med et minimum af regnerier
ved hjelp af resultaterne i det foregdende. Navnlig er vinkeltroskaben og cirkeltroskaben nyttige
hjelpemidler. Lad os som eksempel kigge lidt pa homografien

zZ—1

D(z) = .y .
(2) porayd zeC

Af®(0) = —1, ®(1) = —i og &(co) = 1 i forbindelse med cirkeltroskaben sluttes, at den reelle
akse (tilfgjet 0o) afbildes pd cirklen gennem —1,—i og 1, alts4 enhedscirklen {weC|lw| =1}.

Af®(4) = 0 0g ®(—1) = oo i forbindelse med, at ® er en homeomorfi af C* pd C* sluttes videre,
at halvplanen {z € C|Imz > 0} afbildes p4 D(0;1), og at halvplanen {z € C|Imz < 0}
atbildes pd D(oo; 1). Overve;j! :
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Ved @ er der altsd givet en isomorfi af den gvre halvplan {z € C|Imz > 0} pa enhedscirkelski-
ven D(0; 1). Vi noterer os dette til senere brug.

Yderligere kendskab til @ fés ved at betragte to ortogonale kurvesystemer i C* og bestemme
deres billeder. P4 grund af cirkeltroskaben benyttes kurvesystemer, der bestdr af cirkler i C*
eller cirkelbuer i C*. Bestem for eksempel billederne ved @ af fplgende tre par af ortogonale
kurvesystemer i C*:
(A) Halvlinierne udgaende fra 0 (altsa cirkelbuerne i C* fra 0 til co) og cirklerne med centrum
i0.
(B) Linierne parallelle med den reelle akse og linierne parallelle med den imaginzaere akse. (Der

er altsd tale om to ortogonale cirkelbundter i C*, begge bestéende af cirkler i C* gennem

(C) Halvlinierne udgdende fra —i (altsa cirkelbuerne i C* fra —i til co) og cirklerne med cen-
trum i —2.

Tegn figurer!!

25 Automorfigrupperne for C, D(0;1), {Imz > 0}og C*.

En isomorfi af et omrdde 2 & C pé sig selv kaldes en automorfi i 2. Automorfierne i Q udggr
en transformationsgruppe over {2. Den kaldes automorfigruppen for 2 og betegnes i disse noter
med G (2).

Seetning 25.1 Automorfigruppen for den komplekse plan C bestdr netop af de linecere transfor-
mationer ~ o

f(z) =az+0b, z€C, (a,beC, a#0).
Enhver automorfi i C er altsd en ligedannethedstransformation.

Bevis: En lineer transformation er klart en automorfi i C. Lad omvendt f € G(C). f er s
holomorf i hele C og har altsd en isoleret singularitet i co. Af

f(D'(00;1)) € F(C\ D(0;1)) = C\ £(D(0;1))
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i forbindelse med, at f(D(0;1)) er et omrade, ses, at f(D'(co; 1)) ikke er en overalt tzot punkt-
mangde i C. f har derfor ikke en veesentlig isoleret singularitet i co. f har heller ikke en heevelig
singularitet i co, idet dette ville medfgre, at f var konstant (Liouvilles Seetning). f har altsé pol i
oo og er derfor et polynomium af grad > 1. Da f er en automorfi i C, har f ét og kun ét nulpunkt
z € G, og dette nulpunkt er simpelt (da f'(zp) # 0). f er fplgelig et fprstegradspolynomium. 01

Til at bestemme automorfigruppen G(D(0; 1)) far vi brug for nedenstiende - ogsd i andre forbin-
delser nyttige - Seetning.

Seetning 25.2 (Schwarz’s Lemmay) .
Lad f: D(0;1) — D(0; 1) veere holomorf og lad f(0) = 0.
Da geelder da ‘

1° |f(2)| < |2| for alle z € D(0;1), og |f'(0)] < 1.

2° Hvis der findes et zy € D'(0; 1), sdledes at | f(20)| = |20l, eller hvis | f'(0)| = 1, s@ er f af
formen :

f(z) =az,  2€D(0;1), (a€C, |a| =1);
f er altsd en drejning om 0.

Bevis: Funktionen

@ for z € D'(0;1),
9(z) =
£'(0) for z =0,

er holomorf i D(0; 1). Lad |2| < r < 1. Ifglge Maximumprincippet har vi

L IF() 1
lg(2)| < max l9()| S

Ladervir — 1, far vi
l9(2)| < 1 for alle z € D(0;1),

hvoraf 1° fglger.

Hyvis der findes et 29 € D'(0;1) sé f(z0)| = |20, eller hvis | f'(0)] = 1, s& har vi |g(zo)| = 1
eller [g(0)| = 1. I begge tilfelde har |g| et maximum i D(0; 1), hvilket medfgrer, at g er konstant
i D(0;1). Altsa g(z) = a foralle z € D(0;1), hvora € C, |a| = 1. Heraf fplger 2°. O

Seetning 25.3 Hvis [ er en automorfi i D(0; 1), sdledes at f(0) = 0, sd er f af formen
f(z2)=az, z€D(@;1), (@a€C, |a]=1);

f er altsd en drejning om 0.
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Bevis: Schwartz’s Lemma, anvendt pd bide f og f~!, giver

@ 1f(2)] < 2| foralle z € D(0;1) ;
2 If'(w)| < |w| foralle we D(0;1) .

Sattes w = f(z) 12, fis
3) Iz] < |f(2)| foralle z € D(0;1) .

Af (1) og (3) folger | f(2)| = |2| foralle z € D(0; 1), og Sztning 25.3 fplger nu af 2° i Schwartz’
Lemma. O

Seetning 25.4 Automorfigruppen for enhedscirkelskiven D(0;1) bestdr netop af de homografier,
der kan skrives pd formen
zZ— 2
@ f=aZ20  zeD@),
hvor |a| = 1 og |z| < 1.
Bevis: Lad f vaere en homografi af typen (4). Af

‘e‘ia _ ZUI
Tle 7l

£ (e?)] = |al e =1 for all§: 0 € R,

fremgdr, at f afbilder cirklen {|z| = 1} pé sig selv. Af | f(0)| < 1 sluttes videre, at f (D(0;1)) =
D(0;1). (Vi benytter, at f er en homeomorfi af C* pd C*). f er altsi en automorfi i D(0;1).

Lad omvendt f veere en automorfi i D(0;1). Inspireret af, hvad vi gnsker at vise, satter vi
f7H0) = 2z (s er | 20| < 1 og f(20) = 0) og betragter homografien

il Z— 2 .
9(z) = T z € D(0;1),

der ifglge det lige viste er en automorfi i D(0; 1). Der gaelder g(29) = 0 og derfor g71(0) = 2.
Afbildningen b = f 0 g™ er ogsi en automorfi i D(0; 1), og h(0) = 0. Ifplge Sztning 25.3 er A
af formen h(2) = az, hvor |a| = 1. Af f = h o g fglger s4, at f er en homografi af typen (4). O

Bestemmelse af G({Imz > 0}) fores tilbage til bestemmelsen af G(D(0;1)) ved hjelp af

fplgende

Seetning 25.5 Lad ) og ' veere omrider i C bg lad ¢ veere en isomorfi af Q pa SY . Afbildningen
Feg@r—rpofopeg(®)

er en gruppeisomorfi af G(Q2) pa G(QV).
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Beviset overlades til l&eseren.

Betragt nu den pverst side 133 omtalte isomorfi ®: {Imz > 0} — D(0; 1). Ifplge Sztning 25.5
bestdr G({Imz > 0}) netop af afbildningerne @' o f o ®, hvor f € G(D(0; 1)). Vi ser, at
enhver automorfi i {Imz > 0} er en homografi, og vi slutter, at G({Im z > 0}) netop bestér
af de homografier, der afbilder {Imz > 0} pa sig selv, altsd af de homografier g, der afbilder
R U {co} pd sig selv, og for hvilke Im g(i) > 0. Heraf fglger let

Szetning 25.6 Automorfigruppen for den pvre halvplan {Im z > 0} bestdr netop af de homogra-
fier, der kan skrives pa formlen

g9(z) = ——, z € {Imz > 0},

hvor a,b,c,d € R og ad — bc > 0.

Definition: Ved en automorfi i C* forstds en bijektiv og meromorf afbildning af C* pa sig selv.
Automorfierne i C* udggr en transformationsgruppe over C*, hvilket let eftervises direkte, men
igvrigt fremgér af

Seetning 25.7 Automorfierne i C* er netop de homografiske transformationer.

Bevis: (kortfattet). Lad f vare en automorfi i C*. Ifglge Sztning 23.1 er f en rational funktion.
Da f er en automorfi i C*, har f precis ét nulpunkt i C*, og deite nulpunkt er simpelt. Analogt
har f pracis én pol i C*, og denne pol er simpel. Heraf fglger, at f er en homografi. O

26 Riemanns Afbildningssatning.

Ethvert omréde §2, der er isomorft med en ben cirkelskive, er enkeltsammenhzngende og # C
(jvf. Setning 18.1, side 109). Uden bevis anfgres, at der omvendt gaelder

Szetning 26.1 (Riemanns Afbildningsseetning).
Ethvert enkeltsammenheengende omrdide 2 g C er isomorft (=konformt cekvivalent) med den
dbne cirkelskive D(0;1).

Ved beviset benyttes kuﬁ, at omrddet € G C har den egenskab, at enhver funktion f(2), der er
holomorf og uden nulpunkter i £2, har en holomorf log f(z) i 2. Med satning 26.1 (i forbindelse
med Satning 18.1) er altsd Sztning 13.2, side 77 fuldtud bevist.
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Opgaver

Opgave 91,

Betragt en rational funktion gg;, hvor P(z) og Q(z) er polynomier med komplekse koefficien-
ter og uden faelles rgdder. Lad n = grad Q(2) > 0 og antag, at Q(z) har n forskellige rgdder
Z1,-..,2n € C. Lad grad P(z) < grad Q(2).

Gor rede for, f.eks. ved anvendelse af sidste halvdel af Sztning 14.2, side 86, at partialbr¢kfremstillingen

P(z)
af a0 &

P(z) _ Z": P(z) 1 '
Q(z) = Q'(z) z-—2z
Find partialbrgkfremstillingen af -~ .

Opgave 92,
Find partialbrgkfremstillingen af den rationale funktion

25 4+22+492
4 2234522 -82+4°

@)=

Opgave 93.

Ggr rede for, at tg er en isomorfi af omrddet P = {z+iy € C| -7 <z < %, —co < y < +o0}
pé omrddet C \ {u +iv € C|u = 0, |v| > 1}. Angiv billedet ved tg af liniestykkerne i P paral-
lelle med z-aksen og linierne i P parallelle med y-aksen.

Konstruer Riemann-fladen for arctg og ger rede for, at den er uendelig-bladet med to forgre-
ningspunkter, der begge er af samme art som logaritmefladens forgreningspunkt.

Opgave 94.
Betragt omradet

Q:{x+z’y€C||z|<zr~, —00 <y < +oo} .

Lad f: © — D(0;1) veere holomorf og lad f(0) = 0. Vis, at der gzlder

e2lvl —q

e2lvl +1

|fGy)| < foralley e R .

Vejledning: tg er en isomorfi af §2 pd D(0;1).

Opgave 95.

Lad D = D(0;1). Lad g: D — C og h: D — C vaere holomorfe og injektive. Lad g(0) = h(0)
og g(D) & h(D). Vis, at |g'(0)| < |A'(0)|. Vis yderligere, at |¢’(0)| = |A’(0)| nir og kun nér
9(D) = h(D). -
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Opgave 96.
Lad §2 og Q2 veere omrdder i C. Lad H(f2) vere ringen af holomorfe funktioner i €. Lad H(Y')
veere ringen af holomorfe funktioneri€2'. Lad ¢ vere en isomorfi af pad . Vis, at afbildningen

feHQ)— fopte HY)

er en ringisomorfi af 4 (2) pd H(').

Opgave 97.
Udnyt Setning 25.1 til at give et andet bevis for Sztning 25.7.

Opgave 98. B
Lad h vaere kontinuert i D(0; 1) og holomorf i D(0; 1). Lad |h(2)| <1 for |z| = 1.
Vis, at hvis ay, ay, . . ., ap, € D'(0;1), er nulpunkter for b, si geelder der

|h(0)| < |aiaz...aq.),

og at lighedstegn indtraeffer, nar og kun nér A er af formen

Mz)=b]] =1,
7j=1

1—(1,]'2

hvorb € C, |b| = 1.
Lad f vere en funktion som i Opgave 51, side 81. Ggr rede for, at

|£(0)| < §; maxp,=3 |f(2)],

og at der findes et f forskellig fra nulfunktionen, sdledes at lighedstegn indtreffer.

Opgave 99.
Lad €2 vare et omrdde i C og lad 29 € Q. Vis, at der findes hgjst én isomorfi f: Q — D(0;1),

sdledes at f(z9) = 0 og f'(20) er reel og positiv. ,
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